Perturbation theory for the Laplacian on automorphic functions
HTML articles powered by AMS MathViewer
- by R. Phillips and P. Sarnak PDF
- J. Amer. Math. Soc. 5 (1992), 1-32 Request permission
Abstract:
Let $\Gamma \subset {\text {PSL(2, }}\mathbb {R}{\text {)}}$ be a discrete subgroup with quotient $\Gamma \backslash H$ of finite volume but not compact. The spectrum of the Laplacian on ${L^2}$ automorphic functions is unstable under perturbations; however, it becomes much more manageable when the scattering frequencies are adjoined (with multiplicity equal to the order of the pole of the determinant of the scattering matrix at these points). This augmented set shows up in a natural way in a one-sided version of the Selberg trace formula and is the actual spectrum of the generator of a cut-off wave equation. Applying standard perturbation theory to this operator, it is proved that the augmented spectrum is real analytic in Teichmüller space. The same operator is used to derive Fermi’s Golden Rule in this setting. It turns out that the proper multiplicity to be attached to the Laplacian eigenvalue at $\frac {1}{4}$ is twice the dimension of cusp forms plus $\mu = {\text { tr}}[\Phi {\text { + }}I]{\text {/2}}$ ; here $\Phi$ denotes the scattering matrix at this point. It is shown that the generic value of $\mu$ in the Teichmüller space of the once punctured torus and the six-times punctured sphere is zero. This is also true of the $\chi$-twisted spectral problem, where $\chi$ is a character for $\Gamma$.References
- Peter Buser, Riemannsche Flächen mit Eigenwerten in $(0,$ $1/4)$, Comment. Math. Helv. 52 (1977), no. 1, 25–34. MR 434961, DOI 10.1007/BF02567355
- Isaac Efrat, Eisenstein series and Cartan groups, Illinois J. Math. 31 (1987), no. 3, 428–437. MR 892178 I. Gohberg and M. Kreĭn, Introduction to the theory of linear non-selfadjoint operators, Trans. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, RI, 1969.
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,\,\textbf {R})$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983. MR 711197, DOI 10.1007/BFb0061302
- M. N. Huxley, Introduction to Kloostermania, Elementary and analytic theory of numbers (Warsaw, 1982) Banach Center Publ., vol. 17, PWN, Warsaw, 1985, pp. 217–306. MR 840479 —, Scattering matrices for congruent subgroups, Modular Forms, (R. Rankin, ed.), Ellis Horwood, Chichester, 1984.
- Peter D. Lax and Ralph S. Phillips, Scattering theory for automorphic functions, Annals of Mathematics Studies, No. 87, Princeton University Press, Princeton, N.J., 1976. MR 0562288
- Peter D. Lax and Ralph S. Phillips, The time delay operator and a related trace formula, Topics in functional analysis (essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday), Adv. in Math. Suppl. Stud., vol. 3, Academic Press, New York-London, 1978, pp. 197–215. MR 538021
- Peter D. Lax and Ralph S. Phillips, Scattering theory for automorphic functions, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 2, 261–295. MR 555264, DOI 10.1090/S0273-0979-1980-14735-7
- Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183 (German). MR 31519, DOI 10.1007/BF01329622
- R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of $\textrm {PSL}(2,\textbf {R})$, Invent. Math. 80 (1985), no. 2, 339–364. MR 788414, DOI 10.1007/BF01388610
- R. Phillips and P. Sarnak, The spectrum of Fermat curves, Geom. Funct. Anal. 1 (1991), no. 1, 80–146. MR 1091611, DOI 10.1007/BF01895418
- Robert A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0498390 M. Reed and B. Simon, Methods of mathematical physics, Vol. 4, Academic Press, San Diego, CA, 1978.
- Atle Selberg, Collected papers. Vol. I, Springer-Verlag, Berlin, 1989. With a foreword by K. Chandrasekharan. MR 1117906
- A. B. Venkov, Spectral theory of automorphic functions, Trudy Mat. Inst. Steklov. 153 (1981), 172 (Russian). MR 665585 S. Wolpert, The spectrum of a Riemann surface with a cusp, Taniguchi Symposium Lecture, 1989.
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: J. Amer. Math. Soc. 5 (1992), 1-32
- MSC: Primary 11F72; Secondary 58G25
- DOI: https://doi.org/10.1090/S0894-0347-1992-1127079-X
- MathSciNet review: 1127079