Williams’s conjecture is false for reducible subshifts
Authors:
K. H. Kim and F. W. Roush
Journal:
J. Amer. Math. Soc. 5 (1992), 213-215
MSC:
Primary 54H20; Secondary 15A36, 28D20
DOI:
https://doi.org/10.1090/S0894-0347-1992-1130528-4
MathSciNet review:
1130528
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that for two subshifts of finite type having exactly two irreducible components, strong shift equivalence is not the same as shift equivalence. This refutes the Williams conjecture $[{\text {W}}]$ in the reducible case. The irreducible case remains an open problem.
- Roy L. Adler, Don Coppersmith, and Martin Hassner, Algorithms for sliding block codes. An application of symbolic dynamics to information theory, IEEE Trans. Inform. Theory 29 (1983), no. 1, 5–22. MR 711274, DOI https://doi.org/10.1109/TIT.1983.1056597
- Kirby A. Baker, Strong shift equivalence of $2\times 2$ matrices of nonnegative integers, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 501–508. MR 753918, DOI https://doi.org/10.1017/S0143385700002091
- Rufus Bowen, Markov partitions for Axiom ${\rm A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 725–747. MR 277003, DOI https://doi.org/10.2307/2373370
- K. H. Kim and F. W. Roush, Some results on decidability of shift equivalence, J. Combin. Inform. System Sci. 4 (1979), no. 2, 123–146. MR 564188
- K. H. Kim, F. W. Roush, and J. B. Wagoner, Automorphisms of the dimension group and gyration numbers, J. Amer. Math. Soc. 5 (1992), no. 1, 191–212. MR 1124983, DOI https://doi.org/10.1090/S0894-0347-1992-1124983-3
- Masakazu Nasu, Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 564–607. MR 970572, DOI https://doi.org/10.1007/BFb0082848
- R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 331436, DOI https://doi.org/10.2307/1970908
Retrieve articles in Journal of the American Mathematical Society with MSC: 54H20, 15A36, 28D20
Retrieve articles in all journals with MSC: 54H20, 15A36, 28D20
Additional Information
Keywords:
Strong shift equivalence,
shift equivalence,
reducible shift,
subshift of finite type
Article copyright:
© Copyright 1992
American Mathematical Society