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TWISTORS, KAHLER MANIFOLDS, 
AND BIMEROMORPHIC GEOMETRY. II 

CLAUDE LEBRUN AND YAT-SUN POON 

A well-known theorem of Kodaira and Spencer [11, 15] states that any small 
deformation of the complex structure of a compact Kahler manifold again yields 
a complex manifold of Kahler type. Therefore, the question has been raised [7, 
19] as to whether a similar stability result holds for compact complex manifolds 
that are bimeromorphically equivalent! to Kahler manifolds; that is, for mani-
folds of Fujiki's class Cjj' [6]. In this article, we will analyze the twistor spaces 
obtained in the previous article [13] as small deformations of the Moishezon 
twistor spaces discovered in [12] and show that they are generically not spaces 
of class Cjj' , even though they are obtained as small deformations of spaces that 
are. In short, the bimeromorphic analogue of the Kodaira-Spencer stability 
theorem is false. 2 

In an attempt to make this article as self-contained as possible, we begin with 
a brief introduction to the subject, including a quick review of the essential 
results of the preceding article [13]. 

Our focus here will be on the following class of complex manifolds: 

Definition 1. A twistor space will herein mean a compact complex 3-manifold 
Z with the following properties: 

• There is a free antiholomorphic involution a : Z -t Z, a2 = identity, 
called the real structure of Z . 

• There is a foliation of Z by a-invariant holomorphic curves ~ CIP'!, 
called the real twistor lines. 
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I Two connected compact complex m-manifolds X and Yare called bimeromorphically 

equivalent if there exists a complex m-manifold V, and degree 1 holomorphic maps V -+ X 
and V -+ Y. 

2 A technically different proof of this result was found simultaneously by Campana [3], who has 
chosen to publish his work separately. 
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• Each real twistor line has normal bundle holomorphically isomorphic to 
&( I) EB &( I), where &( I) is the degree-one line bundle on ClP'I. 

The space M of real twistor lines is thus a compact real-analytic 4-manifold, 
and we have real-analytic submersion gJ: Z ---+ M known as the twistor projec-
tion. By a construction discovered by Roger Penrose [16], the complex structure 
of Z induces a half-conformally-flat conformal Riemannian metric on M, and 
every such metric conversely arises in this way [I]; however, we will never ex-
plicitly need this in the sequel. 

We will only concern ourselves here with the class of twistor spaces admitting 
hypersurfaces of the following type: 

Definition 2. An elementary divisor D on a twistor space Z is a complex hy-
persurface D c Z whose homological intersection number with a twistor line is 
+1 and such that D n a(D) :j:: 0. 

An elementary divisor is necessarily a smooth hypersurface. The existence 
of such a divisor D is a powerful hypothesis indeed, for it follows [13, Propo-
sition 6] that D is an n-fold blowup of ClP'2' that M is diffeomorphic to an 
n-fold connected sum ClP'2#··· #ClP'2' and that the map gJlD : D ---+ M contracts 
a projective line to a point, but is elsewhere an orientation-reversing diffeomor-
phism. 

In fact, these conclusions are quite sharp. 

Proposition 1. Let X be any compact complex surface obtained from ClP' 2 by 
blowing up distinct points. Then there exists a twistor space Z that contains an 
elementary divisor D such that D ~ X as a complex surface. Moreover, given a 
smooth (respectively, real-analytic) I-parameter family X t of surfaces obtained 
from ClP'2 by blowing up distinct ordered points, there is a smooth (respectively, 
real-analytic) family (Zt' Dt ) of twistor spaces with elementary divisors such 
that Dt ~ X t . 

Proof In [12] it was shown that, given an arbitrary blowup D of ClP'2 at n 
collinear points, there is a twistor space Z containing a degree 1 divisor iso-
morphic to D. In fact, such twistor spaces Z may be explicitly constructed 
from conic bundles over ClP'1 x ClP'1 by a process of blowing subvarieties up 
and down, and thus may be taken to be Moishezon in this case. In the accom-
panying article [13], the deformation theory of these twistor spaces was studied, 
with the following conclusion. Let PI := (0, 0) and P2 := (I, 0) in C2 , and 
let W c [C2t-2 denote the set 

{(P3' ... 'Pn)lpj E C2 , Pj 1= Pk' j, k = 1, ... , n}; 

let £> c W denote the subset P3' ... 'Pn E (C x {O}) of collinear config-
urations. It was shown [13, Theorem 3] that there exists a (versal) family 
(% ,£g) of twistor spaces with elementary divisors over a 'fI neighborhood of 
[£> x (JR+)n] c [W x (JR+n such that the divisor D associated with a configu-
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ration of points PI ' ... 'Pn E C2 C ClP' 2 and an arbitrary collection of positive 
weights m l , ... , mn E R+ is isomorphic to ClP'2 blown up at PI' ... ,Pn . 

Now suppose we are given an arbitrary compact complex surface X obtained 
from ClP'2 by blowing up n distinct points ql' ... ,qn' There is aline L C ClP'2 
that misses ql' ... , qn' and we now identify ClP'2 - L with C2 in such away 
that ql = (0,0) and q2 = (1,0). Assign all the points, say, weight 1. By 
making a linear transformation, we may also take the points ql' ... , qn to be 
as close as we like to the Z I-axis, so that our configuration becomes a point of 
V . The corresponding fiber of our family (%, 9') then comes equipped with 
an elementary divisor isomorphic to the given X. 

On the other hand, suppose we are instead given an arbitrary smooth fam-
ily X t of surfaces obtained by blowing up n distinct, ordered points in ClP' 2 ' 
where t ranges over R. Let f!I!' ---> R denote the family with fibers {Xt }. 

There is a bundle g ---> B of ClP' 2 's from which f!I!' ---> R is obtained by blow-
ing up n sections ql' ... , qn ; let g* ---> R denote the bundle of dual planes, 
in which the ql"" ,qn define n complex hypersurfaces. The complement 
of these hypersurfaces in g* has real codimension 2, so, by transversality, a 
generic smooth (respectively, real-analytic) section of g* will miss them, and 
we may therefore smoothly (respectively, real-analytically) choose a projective 
line Lt in each fiber Pt of g that misses the points qlt' ... qnt' Using ql as 
the zero section, the complement of these chosen lines becomes a vector bundle 
over R and so may be trivialized in such a manner that q2 == (1, 0). Our 
family of surfaces, therefore, may be thought of as associated with a family of 
point configurations (ql' ... ,qn)t in C2 , where ql == (0, 0) and q2 == (1,0). 
Again, let us assign each point a positive weight, say 1. Now there is a pos-
itive real-analytic function F((3' ... '(n) such that a weighted configuration 
((0,0, 1), (0, 1, 1), ((3' t73' 1), ... , ((n' t7n , 1)) is in V provided that 

L 1t7/ < F((3' ... , (n)' 

Setting (q3' ... , qn)t = (((3(t) , t73(t)) , ... , ((n(t) , t7n(t))) , define 

The family ((PI' 1), ... , (Pn , l))t of weighted configurations then takes values 
within the parameter space V of the family (%,9'). Pulling back (%,9') 
now yields the desired family of twistor spaces with elementary divisors. 0 

It might be emphasized, incidentally, that the twistor space Z is by no means 
determined by the intrinsic structure of a elementary divisor D. Nonetheless, 
we will presently see that the intrinsic structure of such a divisor does tell us a 
great deal about a twistor space, and, in particular, is sufficient to determine its 
algebraic dimension. 
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Let us recall that the algebraic dimension a(Z) of a compact complex mani-
fold Z is by definition the degree of transcendence of its field of meromorphic 
functions, considered as an extension of the field C of constant functions. 
Equivalently, the algebraic dimension of Z is precisely the maximal possible 
dimension of the image of Z under a meromorphic map to ClP N ; in particu-
lar, a(Z) S dimdZ). When equality is achieved in the latter inequality, Z is 
said to be a Moishezon manifold [14] and a suitable sequence of blowups of Z 
along complex sub manifolds will then result in a projective variety. 

The following lemma of Campana will be of critical importance. 

Lemma 1 [2]. A twistor space Z is bimeromorphic to a Kahler manifold iff it is 
Moishezon. 
Proof Let p and q be distinct points of a real twistor line L in a twistor space 
Z, and let Sp (respectively, Sq) denote the space of rational curves through p 
(respectively, q) that are deformations of L. Assume that Z is in the class 
Cjj' • Because the components of the Chow variety of Z are therefore compact, 
the correspondence space 

Z' := {(r, C, ' Cz) E Z x Sp x Sq IrE C, n Cz} 

is thus a compact complex space; by blowing up any singularities, we may as-
sume that Z' is smooth. But since a real twistor line has the same normal 
bundle as a projective line in ClP 3 ' a generic point of Z is joined to either p 
or q only by a discrete set of curves of the fixed class. The correspondence 
space Z', therefore, is generically a branched cover of Z , and, in particular, 
is a 3-fold. On the other hand, we have a canonical map 

¢ : Z' -t lP(TpZ) x lP(TpZ) ~ ClPz x ClPz 
obtained by taking the tangent spaces of curves at their base points p or q. Let 
r be a point of Z that is not on L, but close enough to L so that r is joined 
to p and q by small deformations C, and Cz of L, both of which are ClP, 's 
with normal bundle &( 1) ffi &( 1) . Then (r, C, ' Cz) is a point of Z' at which 
the derivative of ¢ has maximal rank. Pulling back meromorphic functions 
from ClP z x ClP z to Z', therefore, must yield three algebraically independent 
functions, and Z', therefore, is a Moishezon space. But since the projection 
Z' -t Z is surjective, and since the class of Moishezon manifolds is closed under 
holomorphic surjections [14], it follows that Z is also a Moishezon manifold. 

The converse, of course, is trivial. 0 

On the other hand, the following lemma allows one to determine the algebraic 
dimension of a twistor space. 

Lemma 2 [17]. Any meromorphic function on a simply connected twistor space 
Z can be expressed as the ratio of two holomorphic sections of a sufficiently large 
power K- m of the anticanonicalline bundle K-' := /\3 TZ . 
Proof We begin by observing that any (compact) twistor space satisfies 
h'(Z, &) = b,(Z). This is a consequence of the Ward correspondence [20], 
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which says that the set of holomorphic vector bundles on Z that are trivial on 
real twistor lines is in 1-1 correspondence with the instantons on M; in partic-
ular, every holomorphic line bundle on Z with c1 = 0 is obtained by pulling 
back a flat C* -bundle from M and equipping it with the obvious holomorphic 
structure. With the exponential sequence 

1 1 c1 2 
... -+ H (Z, &) -+ H (Z, &J -+ H (Z , Z) -+ ... , 

this implies that holomorphic line bundles on a simply connected twistor space 
are classified by their Chern classes. 

Since we have assumed that Z is simply connected, it follows that H2(Z , Z) 
is free. On the other hand, the Leray-Hirsch theorem tells us that H2(Z, Q) = 
QC1 (Z) EB H2(M, Q). The latter splitting of the cohomology is exactly the 
decomposition of H2 (Z ,Q) into the (=f 1 )-eigenspaces of a * ; a class will be 
called real if it is in the (-1 )-eigenspace, and a complex line bundle will be 
called real if its first Chern class is real. There is thus a unique "fundamental" 
holomorphic line bundle ~ on Z such that any real holomorphic line bundle is 
a power of ~ and such that the restriction of ~ to a twistor line is positive; in 
particular, K = ~k for some k. While we will not need to know this explicitly, 
it can in fact be shown [9] that k = 4 if M is spin, k = 2 otherwise. 

Now suppose that we are given a meromorphic function f on such a Z. 
The function f can a priori be expressed in the form f = g / h ,where g and 
hare holomorphic sections of a line bundle Yf -+ Z ; for example, we could 
take Yf to be the divisor line bundle of the polar locus of f. The pullback a*'i/ 
of the conjugate line bundle of Yf is automatically holomorphic and a*g and 
a*7i are holomorphic sections of this bundle. The holomorphic bundle Yf 0 a*'i/ 
is now real and has sections, and so must be of the form ~m for some positive 
integer m. Thus 

f = ghk- 1a*7ik 

hk a*7ik 

expresses our meromorphic function as the quotient of two holomorphic sec-
tions of Km. 0 

We have already seen that there are examples of Moishezon twistor spaces Z 
containing an elementary divisor D isomorphic to ClF' 2 blown up at a collinear 
configuration of points. We will now see that the situation is dramatically dif-
ferent when the intrinsic structure of D is generic. 

Proposition 2. Suppose that Z is a twistor space with an elementary divisor 
isomorphic to the blowup of ClP' 2 at n generic points, n ~ 7. Then Z has no 
nonconstant meromorphic functions, and so has algebraic dimension O. The set 
of configurations (p 1 ' • •. ,p n) of points in ClP' 2 that are generic in this sense is 
the complement of a countable union of proper algebraic subvarieties of (ClP'2)n 
and, in particular, has full measure. 
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FIGURE 1 

Proof Let us begin by considering the case of a configuration of n points in 
C2 containing a 6-point configuration of the type shown in Figure 1. 

We assume that the other points of the configuration are not on any of three 
projective lines of the figure. The proper transforms of these three lines are then 
(-2)-curves Ej' j = 1, 2, 3. The anticanonical bundle K;;I of the surface D 

thus satisfies K;; liE ~ &'. On the other hand, since the half-anticanonical 
J 

bundle of Z is given by K- I / 2 = [D] 0 [D], we have 

K -1/2 ID = V 0 [Loo] , 

where v denotes the normal bundle of Dc Z and Loo cD is the projective 
line D n D. Yet the adjunction formula yields 

-I -I 
K ID = V 0KD ' 

so that 2 [L]2 - I . I' h -I [L] - 2 
V 0 00 = v 0 K D ,Imp ymg t at v = K D 0 00 and hence 

(1) -1/2 -I -I 
K ID = KD 0 [Loo] . 

It follows that 
K- I / 2 IE ~&,(-1). 

J 

On the other hand, the normal bundle N j of E j c D is isomorphic to &'(-2) ---+ 

CPl' Since 

qEj , &'((K -m/2 IE ) 0 Nj-
k)) = qCPI ' &'( -m + 2k)) 

J 

=0 ifk<T' 

it follows that any section of K- m/2 ID vanishes along E j to order [mll]. But 
through the generic point of D we can find a projective line in D passing 
through a blown-up point not on the diagram, avoiding all other blown-up 
points, and meeting the E j in three distinct points. Letting L denote the 
proper transform of such a line, one has 

-1/2 -I -I 
K IL = (KD 0 [Loo] )IL 

~ &'(2) 0&'(-1) 
~&,(1) , 

so that K- m/2IL ~ &'(m). Yet any holomorphic section of of K- m/ 21v must 
have 3 zeroes on L of multiplicity [mll] at L n E j . Since 3[ mll] > m for 
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m > 6 , we conclude that such a section must vanish identically on L provided 
m is sufficiently large. Hence r(D, &'(K-m/2» = 0 for m sufficiently large, 
and hence, by taking tensor powers of sections, for all m > O. Similarly, 

- m/2 r(D, &'(K- » = 0 for all m > O. From the exact sequences 

(2) 0 --> &'z(K -(m-I)/2) --> &'z(K -m/2) --> &'Du!5(K -(m-I)/2) --> 0, 

we conclude by induction that r(Z, &'(K-m/2» = C for all m > O. By Lemma 
2, any meromorphic function on Z must, therefore, be constant. 

We now examine the case of D obtained from ClP2 by blowing up n > 6 
generically located points. For each n-tuple of points (PI"" ,Pn)u in C2 = 
ClP2 - L oo ' let Du denote the corresponding blowup of ClP2 ' and consider the 
behavior of hO(Du ' &'(K;;um 181 [Loo]-m». By the semicontinuity principle [8] 
and the above calculation, this vanishes, for m fixed, on a nonempty Zariski-
open subset of configurations. The set of n-point configurations for which 
hO(Du ' &'(K;;m 181 [Loo]-m» =f. 0 for some m, therefore, is a countable union 
of subvarieti~s, and so has measure O. Using the exact sequence (2) and the 
isomorphism (1), we conclude that r(Z, &'(K-m/2» = C \1m 2: 0 provided that 
Z contains an elementary divisor D obtained from ClP 2 by blowing up n > 6 
generic points. Again applying Lemma 2, we conclude that, for n 2: 7, any 
meromorphic function on a twistor space Z containing a generic elementary 
divisor, therefore, must be constant. 0 

Our main result now follows immediately. 

Theorem 1. The class '{?, consisting of compact complex manifolds that are 
bimeromorphic to Kahler manifolds, is not stable under small deformations. 
Proof By Propositions 1 and 2, there exist I-parameter families of twistor 
spaces Zt for which almost every Zt has algebraic dimension 0, whereas Zo 
is Moishezon; in fact, it suffices to take Zo to be one of the explicit examples 
of [12], with Do corresponding to a collinear configuration of n 2: 7 points, 
arrange for the curve of configurations (PI"" ,Pn)t to be real-analytic and 
contain at least one generic configuration. (Actually, one can do better: by tak-
ing the elementary divisors D t to all correspond to configurations containing 
projective copies of Figure 1 when t =f. 0, one can even arrange for Zo to be 
the only Moishezon space in the family.) By Lemma 1, the non-Moishezon 
twistor spaces of the family Zt are not of class '(?, despite the fact that they 
are arbitrarily small deformations of the Moishezon space Zo' 0 

Remarks. (i) In order to keep this article as short and clear as possible, we 
only considered the case of n 2: 7 and only presented the extreme cases of 
a(Z) = 3 and a(Z) = O. In fact, in can be shown that generically a(Z) < 3 
as soon as n 2: 4. One can also find simple non collinear configurations for 
which a(Z) = 1, 2 as soon as n 2: 5. Finally, one can show that the existence 
of an elementary divisor corresponding to a collinear configuration forces Z to 
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be one of the examples of [12], and, in particular, Moishezon. For details, see 
[18]. 

(ii) The existence of self-dual metrics on arbitrary connected sums ClP'2#'" 
#ClP'2 was first proved abstractly by Donaldson and Friedman [4] and, using 
completely different methods, by Floer [5]. Unlike the methods used here, 
these methods do not show that the twistor space of some of these metrics are 
Moishezon. It was nonetheless the Donaldson-Friedman construction that orig-
inally gave the authors reason to believe that the generic deformation of the 
explicit twistor spaces of [12] should not be of Fujiki-class q;. For providing 
this source of inspiration, as well as for their friendly advice and encourage-
ment, the authors, therefore, would like to thank Robert Friedman and Simon 
Donaldson. 
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ABSTRACT. Using examples [13] of compact complex 3-manifolds that arise as 
twistor spaces, we show that the class of compact complex manifolds bimero-
morphic to Kahler manifolds is not stable under small deformations of complex 
structure. 
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