Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Caractéristiques d’Euler-Poincaré, fonctions zêta locales et modifications analytiques
HTML articles powered by AMS MathViewer

by J. Denef and F. Loeser
J. Amer. Math. Soc. 5 (1992), 705-720
  • V. Ancona, Espaces de Moišezon relatifs et algébrisation des modifications analytiques, Math. Ann. 246 (1979/80), no. 2, 155–165 (French). MR 564685, DOI 10.1007/BF01420167
  • M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188, DOI 10.1007/BF02684596
  • A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
  • J. Denef, On the degree of Igusa’s local zeta function, Amer. J. Math. 109 (1987), no. 6, 991–1008. MR 919001, DOI 10.2307/2374583
  • J. Denef, Local zeta functions and Euler characteristics, Duke Math. J. 63 (1991), no. 3, 713–721. MR 1121152, DOI 10.1215/S0012-7094-91-06330-1
  • Luc Illusie, Théorie de Brauer et caractéristique d’Euler-Poincaré (d’après P. Deligne), The Euler-Poincaré characteristic (French), Astérisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 161–172 (French). MR 629127
  • F. Loeser, Fonctions d’Igusa $p$-adiques et polynômes de Bernstein, Amer. J. Math. 110 (1988), no. 1, 1–21 (French). MR 926736, DOI 10.2307/2374537
  • François Loeser, Fonctions d’Igusa $p$-adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math. 412 (1990), 75–96 (French). MR 1079002, DOI 10.1515/crll.1990.412.75
  • B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 243–267 (French). MR 737934
  • Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
  • A. N. Varchenko, Zeta-function of monodromy and Newton’s diagram, Invent. Math. 37 (1976), no. 3, 253–262. MR 424806, DOI 10.1007/BF01390323
  • W. Veys, Poles of Igusa’s local zeta function and monodromy, a paraître.
  • Volker Weispfenning, Quantifier elimination and decision procedures for valued fields, Models and sets (Aachen, 1983) Lecture Notes in Math., vol. 1103, Springer, Berlin, 1984, pp. 419–472. MR 775704, DOI 10.1007/BFb0099397
  • Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
  • Alexander Grothendieck, Eléments réguliers des groupes algébriques et des algèbres de Lie, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64) Inst. Hautes Études Sci., Paris, 1964, pp. Fasc. 4, Exposé 13, 47 (French). MR 0219538
  • P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
Similar Articles
Bibliographic Information
  • © Copyright 1992 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 5 (1992), 705-720
  • MSC: Primary 11S40; Secondary 11M41, 14E15, 32S45
  • DOI:
  • MathSciNet review: 1151541