Caractéristiques d’Euler-Poincaré, fonctions zêta locales et modifications analytiques
HTML articles powered by AMS MathViewer
- by J. Denef and F. Loeser
- J. Amer. Math. Soc. 5 (1992), 705-720
- DOI: https://doi.org/10.1090/S0894-0347-1992-1151541-7
- PDF | Request permission
References
- V. Ancona, Espaces de Moišezon relatifs et algébrisation des modifications analytiques, Math. Ann. 246 (1979/80), no. 2, 155–165 (French). MR 564685, DOI 10.1007/BF01420167
- M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188, DOI 10.1007/BF02684596
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- J. Denef, On the degree of Igusa’s local zeta function, Amer. J. Math. 109 (1987), no. 6, 991–1008. MR 919001, DOI 10.2307/2374583
- J. Denef, Local zeta functions and Euler characteristics, Duke Math. J. 63 (1991), no. 3, 713–721. MR 1121152, DOI 10.1215/S0012-7094-91-06330-1
- Luc Illusie, Théorie de Brauer et caractéristique d’Euler-Poincaré (d’après P. Deligne), The Euler-Poincaré characteristic (French), Astérisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 161–172 (French). MR 629127
- F. Loeser, Fonctions d’Igusa $p$-adiques et polynômes de Bernstein, Amer. J. Math. 110 (1988), no. 1, 1–21 (French). MR 926736, DOI 10.2307/2374537
- François Loeser, Fonctions d’Igusa $p$-adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math. 412 (1990), 75–96 (French). MR 1079002, DOI 10.1515/crll.1990.412.75
- B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 243–267 (French). MR 737934
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
- A. N. Varchenko, Zeta-function of monodromy and Newton’s diagram, Invent. Math. 37 (1976), no. 3, 253–262. MR 424806, DOI 10.1007/BF01390323 W. Veys, Poles of Igusa’s local zeta function and monodromy, a paraître.
- Volker Weispfenning, Quantifier elimination and decision procedures for valued fields, Models and sets (Aachen, 1983) Lecture Notes in Math., vol. 1103, Springer, Berlin, 1984, pp. 419–472. MR 775704, DOI 10.1007/BFb0099397
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
- Alexander Grothendieck, Eléments réguliers des groupes algébriques et des algèbres de Lie, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64) Inst. Hautes Études Sci., Paris, 1964, pp. Fasc. 4, Exposé 13, 47 (French). MR 0219538
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: J. Amer. Math. Soc. 5 (1992), 705-720
- MSC: Primary 11S40; Secondary 11M41, 14E15, 32S45
- DOI: https://doi.org/10.1090/S0894-0347-1992-1151541-7
- MathSciNet review: 1151541