Subdivisions and local $h$-vectors
HTML articles powered by AMS MathViewer
- by Richard P. Stanley
- J. Amer. Math. Soc. 5 (1992), 805-851
- DOI: https://doi.org/10.1090/S0894-0347-1992-1157293-9
- PDF | Request permission
Abstract:
In Part I a general theory of $f$-vectors of simplicial subdivisions (or triangulations) of simplicial complexes is developed, based on the concept of local $h$-vector. As an application, we prove that the $h$-vector of a Cohen-Macaulay complex increases under “quasi-geometric” subdivision, thus establishing a special case of a conjecture of Kalai and this author. Techniques include commutative algebra, homological algebra, and the intersection homology of toric varieties. In Part II we extend the work of Part I to more general situations. First a formal generalization of subdivision is given based on incidence algebras. Special cases are then developed, in particular one based on subdivisions of Eulerian posets and involving generalized $h$-vectors. Other cases deal with Kazhdan-Lusztig polynomials, Ehrhart polynomials, and a $q$-analogue of Eulerian posets. Many applications and examples are given throughout.References
- M. M. Bayer, The generalized Dehn-Sommerville equations revisited, Technical Report, Northeastern University, May, 1986.
- Margaret M. Bayer, Equidecomposable and weakly neighborly polytopes, Israel J. Math. 81 (1993), no. 3, 301–320. MR 1231196, DOI 10.1007/BF02764835
- L. J. Billera, Polyhedral theory and commutative algebra, Mathematical programming: the state of the art (Bonn, 1982) Springer, Berlin-New York, 1983, pp. 57–77. MR 717396
- A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), no. 1, 7–16. MR 746039, DOI 10.1016/S0195-6698(84)80012-8
- Francesco Brenti, Unimodal polynomials arising from symmetric functions, Proc. Amer. Math. Soc. 108 (1990), no. 4, 1133–1141. MR 993741, DOI 10.1090/S0002-9939-1990-0993741-2 —, Permutation enumeration, symmetric functions, and unimodality, Pacific J. Math., submitted.
- Louis J. Billera, Paul Filliman, and Bernd Sturmfels, Constructions and complexity of secondary polytopes, Adv. Math. 83 (1990), no. 2, 155–179. MR 1074022, DOI 10.1016/0001-8708(90)90077-Z
- Margaret M. Bayer and Andrew Klapper, A new index for polytopes, Discrete Comput. Geom. 6 (1991), no. 1, 33–47. MR 1073071, DOI 10.1007/BF02574672
- U. Betke and P. McMullen, Lattice points in lattice polytopes, Monatsh. Math. 99 (1985), no. 4, 253–265. MR 799674, DOI 10.1007/BF01312545
- Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 0460128, DOI 10.1007/978-94-010-2196-8
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR 872468
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), no. 3, 499–511. MR 782232, DOI 10.1007/BF01388520
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Hyperdeterminants, Adv. Math. 96 (1992), no. 2, 226–263. MR 1196989, DOI 10.1016/0001-8708(92)90056-Q
- M. Goresky and R. MacPherson, On the topology of complex algebraic maps, Algebraic geometry (La Rábida, 1981) Lecture Notes in Math., vol. 961, Springer, Berlin, 1982, pp. 119–129. MR 708330, DOI 10.1007/BFb0071279
- I. M. Gel′fand, A. V. Zelevinskiĭ, and M. M. Kapranov, Discriminants of polynomials in several variables and triangulations of Newton polyhedra, Algebra i Analiz 2 (1990), no. 3, 1–62 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 3, 449–505. MR 1073208
- Mark Haiman, A simple and relatively efficient triangulation of the $n$-cube, Discrete Comput. Geom. 6 (1991), no. 4, 287–289. MR 1098809, DOI 10.1007/BF02574690
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Peter John Hilton and Urs Stammbach, A course in homological algebra, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR 0346025, DOI 10.1007/978-1-4684-9936-0
- Gil Kalai, The diameter of graphs of convex polytopes and $f$-vector theory, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 387–411. MR 1116365, DOI 10.1090/dimacs/004/31
- Victor Klee, A combinatorial analogue of Poincaré’s duality theorem, Canadian J. Math. 16 (1964), 517–531. MR 189039, DOI 10.4153/CJM-1964-053-0
- Bernd Kind and Peter Kleinschmidt, Schälbare Cohen-Macauley-Komplexe und ihre Parametrisierung, Math. Z. 167 (1979), no. 2, 173–179 (German). MR 534824, DOI 10.1007/BF01215121
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Carl W. Lee, Regular triangulations of convex polytopes, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 443–456. MR 1116369, DOI 10.1090/dimacs/004/35
- I. G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181–192. MR 298542, DOI 10.1112/jlms/s2-4.1.181
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598 R. MacPherson, Intersection homology and perverse sheaves, preprint.
- P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179–184. MR 283691, DOI 10.1112/S0025579300002850
- Mitsuhiro Miyazaki, Characterizations of Buchsbaum complexes, Manuscripta Math. 63 (1989), no. 2, 245–254. MR 980576, DOI 10.1007/BF01168875
- James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006
- Peter Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z. 178 (1981), no. 1, 125–142. MR 627099, DOI 10.1007/BF01218376
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Richard P. Stanley, Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194–253. MR 411982, DOI 10.1016/0001-8708(74)90030-9
- Richard P. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math. 54 (1975), no. 2, 135–142. MR 458437, DOI 10.1002/sapm1975542135
- Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, DOI 10.1016/0001-8708(78)90045-2
- Richard P. Stanley, Cohen-Macaulay complexes, Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976) NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., vol. 31, Reidel, Dordrecht-Boston, Mass., 1977, pp. 51–62. MR 0572989
- Richard P. Stanley, Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249 (1979), no. 1, 139–157. MR 526314, DOI 10.1090/S0002-9947-1979-0526314-6
- Richard P. Stanley, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980), no. 3, 236–238. MR 563925, DOI 10.1016/0001-8708(80)90050-X
- Richard P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), no. 2, 132–161. MR 654618, DOI 10.1016/0097-3165(82)90017-6
- Richard P. Stanley, Combinatorics and commutative algebra, Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1983. MR 725505, DOI 10.1007/978-1-4899-6752-7
- Richard P. Stanley, The number of faces of simplicial polytopes and spheres, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 212–223. MR 809209, DOI 10.1111/j.1749-6632.1985.tb14556.x
- Richard Stanley, Generalized $H$-vectors, intersection cohomology of toric varieties, and related results, Commutative algebra and combinatorics (Kyoto, 1985) Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 187–213. MR 951205, DOI 10.2969/aspm/01110187 —, Enumerative combinatorics, Vol. 1, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1986. —, Unimodal and log-concave sequences in algebra, combinatorics, and geometry, Graph Theory and Its Applications: East and West, Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500-535. —, A monotonicity property of $h$-vectors and ${h^ * }$-vectors, preprint.
- John R. Stembridge, Eulerian numbers, tableaux, and the Betti numbers of a toric variety, Discrete Math. 99 (1992), no. 1-3, 307–320. MR 1158793, DOI 10.1016/0012-365X(92)90378-S
- Jürgen Stückrad and Wolfgang Vogel, Buchsbaum rings and applications, Springer-Verlag, Berlin, 1986. An interaction between algebra, geometry and topology. MR 881220, DOI 10.1007/978-3-662-02500-0
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: J. Amer. Math. Soc. 5 (1992), 805-851
- MSC: Primary 52B20; Secondary 05E99, 06A07, 13D40, 55U10
- DOI: https://doi.org/10.1090/S0894-0347-1992-1157293-9
- MathSciNet review: 1157293