ERRATUM TO

"THE STRUCTURE OF RATIONAL AND RULED SYMPLECTIC 4-MANIFOLDS"

DUSA MCDUFF

Francois Lalonde pointed out that Theorem 1.3 in [2] about the structure of symplectic S^2-bundles needs an extra hypothesis. The argument which proves uniqueness works only for a restricted range of cohomology classes, and the condition $a^2(V) > (a(F))^2$ need not hold when M has genus > 0. The mistake occurred in Lemma 4.15 where I failed to realise that the integral of the form ρ over the section Γ is not zero in general, but depends on the homology class of Γ. Thus this Lemma holds only under certain restrictions on $[\omega]$.

The methods developed in [2] suffice to prove the following theorems which replace Theorem 1.3, Corollary 1.5(iii), and Proposition 4.17: for complete details, see [3]. We will say that two symplectic forms ω_0 and ω_1 are pseudo-isotopic if they may be joined by a family of not necessarily cohomologous symplectic forms.

Theorem 1. Let ω be a symplectic form on $M \times S^2$ which is compatible with the projection onto the Riemann surface M.

(i) If M is S^2 or T^2, ω is isotopic to a split form.

(ii) If M has genus $g > 1$, the statement in (i) holds provided that $\mu_1 > q\mu_2$, where $\mu_1 = \omega(M \times \text{pt}), \mu_2 = \omega(\text{pt} \times S^2)$ and $q = \lceil \frac{q}{2} \rceil$.

(iii) ω is always pseudo-isotopic to a split form. Moreover, it is isotopic to a split form iff it has a symplectic section in class $[M \times \text{pt}]$.

In the case of the nontrivial S^2-bundle V_M over M, we write $\{b_-, b_+\}$ for the basis of $H^2(M)$ dual to the homology basis $\{[M_-], [M_+]\}$ where M_- (resp. M_+) is a section with self-intersection -1 (resp. $+1$).

Theorem 2. (i) When $M = S^2$, the class $a = \mu_+ b_+ + \mu_- b_-$ may be represented by a compatible symplectic form on V_M only if $\mu_+ > \mu_- > 0$. Moreover, up to isotopy there is a unique such form in each class.

(ii) If M has genus $g > 0$, every class with $\mu_+ > |\mu_-| > 0$ has a compatible symplectic representative. There is a unique form up to isotopy in each class such that $q\mu_- > (q - 1)\mu_+$, where $q = \lceil \frac{q+1}{2} \rceil$.

Received by the editors May 4, 1992.
The author was partially supported by NSF grant DMS 9103033.

©1992 American Mathematical Society
0894-0347/92 $1.00 + $.25 per page

987
(iii) All these forms are pseudo-isotopic.

Other inaccuracies:
1. In Lemma 4.9 one must assume that \(\omega_0 = \omega_1 \) at the point \(S_L \cap F \). Similarly in Proposition 4.18. A corrected version of Proposition 4.18 is given in [3].

2. The proof of Lemma 4.16 is not quite right because the complex structure \(J'_1 \) has too many cusp-curves. However, this is easy to rectify: one just has to replace \(J'_1 \) by a generic integrable \(J \). This is discussed in detail in [3].

3. The proof of (5.5) is inadequate because when I was considering blowing down I did not allow for the possibility that the intersection number \(C \cdot \Sigma \) might be \(\geq 2 \), so that the blow down of \(C \) would no longer be embedded. The given arguments prove that the category under consideration is closed under pseudo-isotopy, under blowing up, and under blowing down when \(C \cdot \Sigma \leq 1 \). When \(C \cdot \Sigma \geq 2 \), we reduce to the corresponding result in the integrable case as follows. Let \((\bar{V}, \bar{\omega}) \) be a minimal reduction of \((V, \omega) \) obtained by blowing down a family of exceptional spheres \(\Sigma_i \) which includes \(\Sigma \). Then \(C \) descends to an immersed \(J \)-holomorphic sphere in \(\bar{V} \) which is not embedded. If \(\bar{V} \) were an \(S^2 \)-bundle over a Riemann surface \(M \) of genus \(\geq 0 \) the projection of \(C \) onto \(M \) would be a map of positive degree, which is impossible. Therefore, \((\bar{V}, \bar{\omega}) \) is rational, and hence Kähler. Furthermore, there is a Kähler form \(\omega' \) on \(V \) which is pseudo-isotopic to \(\omega \). (Take \(\omega' \) so that its integral over the \(\Sigma_i \) is small.) By deforming \(\omega' \) further, we may assume that the Kähler manifold \((V, \omega') \) is a blow-up of \(\mathbb{C}P^2 \) rather than \(S^2 \times S^2 \). By Lemma 3.1, the homology class \([\Sigma]\) is represented by a \(J \)-holomorphic curve or cusp-curve, for each \(\omega \)-tame \(J \). If we choose \(J \) to be integrable and good and generic in the sense of [1, Ch. III], then \([\Sigma]\) must be represented by a curve \(\Sigma_f \). Then \(\Sigma_f \) is isotopic to \(\Sigma \), and, because our category is closed under pseudo-isotopy, it suffices to show that the complex surface obtained from \(V \) by blowing down \(\Sigma_f \) contains a suitable embedded rational curve. But this follows from the Castelnuovo criterion.

References

Department of Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794-3651
E-mail address: dusa@math.sunysb.edu