Ends of hyperbolic $3$-manifolds
HTML articles powered by AMS MathViewer
- by Richard D. Canary
- J. Amer. Math. Soc. 6 (1993), 1-35
- DOI: https://doi.org/10.1090/S0894-0347-1993-1166330-8
- PDF | Request permission
Abstract:
Let $N = {{\mathbf {H}}^3}/\Gamma$ be a hyperbolic $3$-manifold which is homeomorphic to the interior of a compact $3$-manifold. We prove that $N$ is geometrically tame. As a consequence, we prove that $\Gamma$’s limit set ${L_\Gamma }$ is either the entire sphere at infinity or has measure zero. We also prove that $N$’s geodesic flow is ergodic if and only if ${L_\Gamma }$ is the entire sphere at infinity.References
- Lars V. Ahlfors, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 251–254. MR 194970, DOI 10.1073/pnas.55.2.251
- Lars V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. MR 725161
- Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 823981, DOI 10.1007/978-1-4684-9159-3
- Francis Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 237–270. MR 732345 —, Bouts des varietes hyperboliques de dimension 3, prepublicationes de Orsay, 1985.
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- B. H. Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995), no. 1, 229–274. MR 1317633, DOI 10.1215/S0012-7094-95-07709-6 R.D. Canary, Hyperbolic structures on $3$-manifolds with compressible boundary, Ph. D. thesis, Princeton Univ., 1989.
- Richard D. Canary, On the Laplacian and the geometry of hyperbolic $3$-manifolds, J. Differential Geom. 36 (1992), no. 2, 349–367. MR 1180387 —, Algebraic limits of Schottky groups, Trans. Amer. Math. Soc. (to appear). —, A covering theorem for hyperbolic $3$-manifolds and its applications, Preprint.
- R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3–92. MR 903850
- A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275–283. MR 918537, DOI 10.1016/0166-8641(87)90092-7
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR 385749, DOI 10.1002/cpa.3160280303
- Marc Culler and Peter B. Shalen, Paradoxical decompositions, $2$-generator Kleinian groups, and volumes of hyperbolic $3$-manifolds, J. Amer. Math. Soc. 5 (1992), no. 2, 231–288. MR 1135928, DOI 10.1090/S0894-0347-1992-1135928-4
- Patrick Eberlein, Geodesic flows on negatively curved manifolds. II, Trans. Amer. Math. Soc. 178 (1973), 57–82. MR 314084, DOI 10.1090/S0002-9947-1973-0314084-0
- D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR 903852
- Mark Feighn and Darryl McCullough, Finiteness conditions for $3$-manifolds with boundary, Amer. J. Math. 109 (1987), no. 6, 1155–1169. MR 919007, DOI 10.2307/2374589
- Michael Freedman, Joel Hass, and Peter Scott, Least area incompressible surfaces in $3$-manifolds, Invent. Math. 71 (1983), no. 3, 609–642. MR 695910, DOI 10.1007/BF02095997
- M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), no. 1, 1–12. MR 892185, DOI 10.1007/BF01404671
- John Hempel, The finitely generated intersection property for Kleinian groups, Knot theory and manifolds (Vancouver, B.C., 1983) Lecture Notes in Math., vol. 1144, Springer, Berlin, 1985, pp. 18–24. MR 823280, DOI 10.1007/BFb0075010
- Allen Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991), no. 2, 189–194. MR 1123262, DOI 10.1016/0166-8641(91)90050-V
- William Jaco, Adding a $2$-handle to a $3$-manifold: an application to property $R$, Proc. Amer. Math. Soc. 92 (1984), no. 2, 288–292. MR 754723, DOI 10.1090/S0002-9939-1984-0754723-6
- Klaus Johannson, Homotopy equivalences of $3$-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR 551744
- Leon Karp, Subharmonic functions on real and complex manifolds, Math. Z. 179 (1982), no. 4, 535–554. MR 652859, DOI 10.1007/BF01215065
- Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235–265. MR 690845, DOI 10.2307/2007076
- Steven P. Kerckhoff, The measure of the limit set of the handlebody group, Topology 29 (1990), no. 1, 27–40. MR 1046623, DOI 10.1016/0040-9383(90)90023-D
- Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
- Albert Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462. MR 349992, DOI 10.2307/1971059
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Howard Masur, Measured foliations and handlebodies, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 99–116. MR 837978, DOI 10.1017/S014338570000331X
- William H. Meeks III and Shing Tung Yau, The equivariant Dehn’s lemma and loop theorem, Comment. Math. Helv. 56 (1981), no. 2, 225–239. MR 630952, DOI 10.1007/BF02566211
- Yair N. Minsky, Harmonic maps into hyperbolic $3$-manifolds, Trans. Amer. Math. Soc. 332 (1992), no. 2, 607–632. MR 1100698, DOI 10.1090/S0002-9947-1992-1100698-9
- John W. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, The Smith conjecture (New York, 1979) Pure Appl. Math., vol. 112, Academic Press, Orlando, FL, 1984, pp. 37–125. MR 758464, DOI 10.1016/S0079-8169(08)61637-2
- Peter J. Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. MR 1041575, DOI 10.1017/CBO9780511600678 J.P. Otal, Courants geodesiques et produits libres, Preprint.
- S. J. Patterson, Lectures on measures on limit sets of Kleinian groups, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 281–323. MR 903855
- Peter A. Perry, The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. Reine Angew. Math. 398 (1989), 67–91. MR 998472, DOI 10.1515/crll.1989.398.67
- G. P. Scott, Compact submanifolds of $3$-manifolds, J. London Math. Soc. (2) 7 (1973), 246–250. MR 326737, DOI 10.1112/jlms/s2-7.2.246
- G. P. Scott and G. A. Swarup, Geometric finiteness of certain Kleinian groups, Proc. Amer. Math. Soc. 109 (1990), no. 3, 765–768. MR 1013981, DOI 10.1090/S0002-9939-1990-1013981-6
- Peter Scott and Thomas Tucker, Some examples of exotic noncompact $3$-manifolds, Quart. J. Math. Oxford Ser. (2) 40 (1989), no. 160, 481–499. MR 1033220, DOI 10.1093/qmath/40.4.481
- Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 147–164. MR 0130324
- Jonathan Simon, Compactification of covering spaces of compact $3$-manifolds, Michigan Math. J. 23 (1976), no. 3, 245–256 (1977). MR 431176
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586 —, Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure and Hausdorff dimension 2, Geometry Symposium Utrecht 1980, Lecture Notes in Math., vol. 894, Springer-Verlag, 1981, pp. 127-144. W. Thurston, The geometry and topology of $3$-manifolds, lecture notes.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- William P. Thurston, A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130. MR 823443
- Thomas W. Tucker, Non-compact $3$-manifolds and the missing-boundary problem, Topology 13 (1974), 267–273. MR 353317, DOI 10.1016/0040-9383(74)90019-6
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc. 6 (1993), 1-35
- MSC: Primary 57M50; Secondary 30F40
- DOI: https://doi.org/10.1090/S0894-0347-1993-1166330-8
- MathSciNet review: 1166330