Navier-Stokes equations on thin $3$D domains. I. Global attractors and global regularity of solutions
Authors:
Geneviève Raugel and George R. Sell
Journal:
J. Amer. Math. Soc. 6 (1993), 503-568
MSC:
Primary 35Q30; Secondary 34D45, 35B65, 58F39, 76D05
DOI:
https://doi.org/10.1090/S0894-0347-1993-1179539-4
MathSciNet review:
1179539
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We examine the Navier-Stokes equations (NS) on a thin $3$-dimensional domain ${\Omega _\varepsilon } = {Q_2} \times (0,\varepsilon )$, where ${Q_2}$ is a suitable bounded domain in ${\mathbb {R}^2}$ and $\varepsilon$ is a small, positive, real parameter. We consider these equations with various homogeneous boundary conditions, especially spatially periodic boundary conditions. We show that there are large sets $\mathcal {R}(\varepsilon )$ in ${H^1}({\Omega _\varepsilon })$ and $\mathcal {S}(\varepsilon )$ in ${W^{1,\infty }}((0,\infty ),{L^2}({\Omega _\varepsilon }))$ such that if ${U_0} \in \mathcal {R}(\varepsilon )$ and $F \in \mathcal {S}(\varepsilon )$, then (NS) has a strong solution $U(t)$ that remains in ${H^1}({\Omega _\varepsilon })$ for all $t \geq 0$ and in ${H^2}({\Omega _\varepsilon })$ for all $t > 0$. We show that the set of strong solutions of (NS) has a local attractor ${\mathfrak {A}_\varepsilon }$ in ${H^1}({\Omega _\varepsilon })$, which is compact in ${H^2}({\Omega _\varepsilon })$. Furthermore, this local attractor ${\mathfrak {A}_\varepsilon }$ turns out to be the global attractor for all the weak solutions (in the sense of Leray) of (NS). We also show that, under reasonable assumptions, ${\mathfrak {A}_\varepsilon }$ is upper semicontinuous at $\varepsilon = 0$.
- A. V. Babin and M. I. Vishik, Attraktory èvolyutsionnykh uravneniĭ, “Nauka”, Moscow, 1989 (Russian). MR 1007829
- L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. MR 673830, DOI https://doi.org/10.1002/cpa.3160350604
- Peter Constantin and Ciprian Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. MR 972259 M. Dauge (1984), Réguliarité et singularités des systémes de Stokes et Navier-Stokes dans des domaines non réguliers de ${\mathbb {R}^2}$ ou ${\mathbb {R}^3}$, Séminaire d’Equations aux Dérivées Partielles de Nantes-1984.
- Monique Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal. 20 (1989), no. 1, 74–97. MR 977489, DOI https://doi.org/10.1137/0520006
- Ciprian Foiaş, Colette Guillopé, and Roger Temam, New a priori estimates for Navier-Stokes equations in dimension $3$, Comm. Partial Differential Equations 6 (1981), no. 3, 329–359. MR 607552, DOI https://doi.org/10.1080/03605308108820180
- C. Foias, O. Manley, and R. Temam, Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Nonlinear Anal. 11 (1987), no. 8, 939–967. MR 903787, DOI https://doi.org/10.1016/0362-546X%2887%2990061-7
- Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309–353. MR 943945, DOI https://doi.org/10.1016/0022-0396%2888%2990110-6
- C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339–368. MR 544257
- Ciprian Foias and Roger Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory, Directions in partial differential equations (Madison, WI, 1985) Publ. Math. Res. Center Univ. Wisconsin, vol. 54, Academic Press, Boston, MA, 1987, pp. 55–73. MR 1013833
- Hiroshi Fujita and Tosio Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269–315. MR 166499, DOI https://doi.org/10.1007/BF00276188
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Yoshikazu Giga, Book Review: The equations of Navier-Stokes and abstract parabolic equations, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 337–340. MR 1567693, DOI https://doi.org/10.1090/S0273-0979-1988-15663-7
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371
- J. K. Hale and G. Raugel, Partial differential equations on thin domains, Differential equations and mathematical physics (Birmingham, AL, 1990) Math. Sci. Engrg., vol. 186, Academic Press, Boston, MA, 1992, pp. 63–97. MR 1126691, DOI https://doi.org/10.1016/S0076-5392%2808%2963376-7
- Jack K. Hale and Geneviève Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures Appl. (9) 71 (1992), no. 1, 33–95. MR 1151557
- Jack K. Hale and Geneviève Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc. 329 (1992), no. 1, 185–219. MR 1040261, DOI https://doi.org/10.1090/S0002-9947-1992-1040261-1
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Eberhard Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213–231 (German). MR 50423, DOI https://doi.org/10.1002/mana.3210040121
- A. A. Kiselev and O. A. Ladyženskaya, On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid, Izv. Akad. Nauk SSSR. Ser. Mat. 21 (1957), 655–680 (Russian). MR 0100448
- Gen Komatsu, Global analyticity up to the boundary of solutions of the Navier-Stokes equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 545–566. MR 575737, DOI https://doi.org/10.1002/cpa.3160330405
- O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969. Second English edition, revised and enlarged; Translated from the Russian by Richard A. Silverman and John Chu. MR 0254401 ---(1970), Unique solvability in the large of three dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Boundary Value Problem of Mathematical Physics and Related Aspects of Function Theory, Steklov Math. Inst., Leningrad, pp. 70-79. ---(1972), On the dynamical system generated by the Navier-Stokes equations, J. Soviet Math. 3, 458-479. J. Leray (1933), Etude de diverses équations intégrales nonlinéaires et de quelques problémes que pose l’hydrodynamique, J. Math. Pures Appl. 12, 1-82. ---(1934a), Essai sur les mouvements plans d’un liquide visqueux que limitent des parois, J. Math. Pures Appl. 13, 331-418. ---(1934b), Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63, 193-248.
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- Jacques-Louis Lions and Giovanni Prodi, Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris 248 (1959), 3519–3521 (French). MR 108964
- A. Mahalov, E. S. Titi, and S. Leibovich, Invariant helical subspaces for the Navier-Stokes equations, Arch. Rational Mech. Anal. 112 (1990), no. 3, 193–222. MR 1076072, DOI https://doi.org/10.1007/BF00381234
- John Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations 22 (1976), no. 2, 331–348. MR 423399, DOI https://doi.org/10.1016/0022-0396%2876%2990032-2
- Kyûya Masuda, On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad. 43 (1967), 827–832. MR 247304
- Richard K. Miller and George R. Sell, Volterra integral equations and topological dynamics, Memoirs of the American Mathematical Society, No. 102, American Mathematical Society, Providence, R.I., 1970. MR 0288381
- Geneviève Raugel, Continuity of attractors, RAIRO Modél. Math. Anal. Numér. 23 (1989), no. 3, 519–533 (English, with French summary). Joint work with Jack K. Hale; Attractors, inertial manifolds and their approximation (Marseille-Luminy, 1987). MR 1014489, DOI https://doi.org/10.1051/m2an/1989230305191
- Geneviève Raugel and George R. Sell, Équations de Navier-Stokes dans des domaines minces en dimension trois: régularité globale, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 6, 299–303 (French, with English summary). MR 1054239 ---(1992a), Navier-Stokes equations on thin $3D$ domains. II: Global regularity of spatially periodic solutions, College de France Proceedings, Pitman Res. Notes Math. Ser., Pitman, New York and London. ---(1992b), Navier-Stokes equations on thin $3D$ domains. III: Global attractors, IMA Proceedings on Dynamical Systems Approaches to Turbulence.
- Robert J. Sacker and George R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc. 11 (1977), no. 190, iv+67. MR 448325, DOI https://doi.org/10.1090/memo/0190
- Robert J. Sacker and George R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations 113 (1994), no. 1, 17–67. MR 1296160, DOI https://doi.org/10.1006/jdeq.1994.1113
- George R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory, Trans. Amer. Math. Soc. 127 (1967), 241–262. MR 212313, DOI https://doi.org/10.1090/S0002-9947-1967-0212313-2
- George R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory, Trans. Amer. Math. Soc. 127 (1967), 241–262. MR 212313, DOI https://doi.org/10.1090/S0002-9947-1967-0212313-2
- George R. Sell, Differential equations without uniqueness and classical topological dynamics, J. Differential Equations 14 (1973), 42–56. MR 326085, DOI https://doi.org/10.1016/0022-0396%2873%2990075-2
- George R. Sell, Ciprian Foias, and Roger Temam (eds.), Turbulence in fluid flows, The IMA Volumes in Mathematics and its Applications, vol. 55, Springer-Verlag, New York, 1993. A dynamical systems approach. MR 1319867
- James Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9 (1962), 187–195. MR 136885, DOI https://doi.org/10.1007/BF00253344
- Roger Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Mathematics and its Applications, Vol. 2. MR 0609732
- R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations, J. Differential Equations 43 (1982), no. 1, 73–92. MR 645638, DOI https://doi.org/10.1016/0022-0396%2882%2990075-4
- Roger Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR 764933
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967
- Wolf von Wahl, The equations of Navier-Stokes and abstract parabolic equations, Aspects of Mathematics, E8, Friedr. Vieweg & Sohn, Braunschweig, 1985. MR 832442
Retrieve articles in Journal of the American Mathematical Society with MSC: 35Q30, 34D45, 35B65, 58F39, 76D05
Retrieve articles in all journals with MSC: 35Q30, 34D45, 35B65, 58F39, 76D05
Additional Information
Keywords:
Attractor,
global attractor,
global regularity,
Navier-Stokes equations,
three-dimensional space
Article copyright:
© Copyright 1993
American Mathematical Society