Reduction to real infinitesimal character in affine Hecke algebras
HTML articles powered by AMS MathViewer
- by Dan Barbasch and Allen Moy PDF
- J. Amer. Math. Soc. 6 (1993), 611-635 Request permission
References
- D. Barbasch, The unitary dual for complex classical Lie groups, Invent. Math. 96 (1989), 103-176.
D. Barbasch and A. Moy, A unitarity criterion for $p$-adic groups, Invent. Math. 98 (1989), 19-38.
A. Borel and N. Wallach, Continuous cohomology, discrete subgroups and representations of reductive groups, Ann. of Math. Stud., vol. 94, Princeton Univ. Press, Princeton, NJ, 1980.
D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153-215.
G. Lusztig, Some examples of square integrable representations of semisimple $p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), 623-653.
G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599-635.
—, Cuspidal local systems and graded algebras. I, Inst. Hautes Étude Sci. Publ. Math. 67 (1988), 145-202.
—, Character sheaves. I-V, Adv. in Math. 56, 57, 59, 61 (1985-86).
T. Springer, Reductive groups, Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, RI, 1979, pp. 3-27.
J. Tits, Reductive groups over local fields, Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, RI, 1979, pp. 29-69.
D. Vogan, Unitary representations of reductive Lie groups, Ann. of Math. Stud., vol. 118, Princeton Univ. Press, Princeton, NJ, 1987.
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc. 6 (1993), 611-635
- MSC: Primary 22E50
- DOI: https://doi.org/10.1090/S0894-0347-1993-1186959-0
- MathSciNet review: 1186959