Analytic torsion and $R$-torsion for unimodular representations
HTML articles powered by AMS MathViewer
- by Werner Müller
- J. Amer. Math. Soc. 6 (1993), 721-753
- DOI: https://doi.org/10.1090/S0894-0347-1993-1189689-4
- PDF | Request permission
References
- Dror Bar-Natan and Edward Witten, Perturbative expansion of Chern-Simons theory with noncompact gauge group, Comm. Math. Phys. 141 (1991), no. 2, 423–440. MR 1133274, DOI 10.1007/BF02101513
- Jean-Michel Bismut and Weiping Zhang, An extension of a theorem by Cheeger and Müller, Astérisque 205 (1992), 235 (English, with French summary). With an appendix by François Laudenbach. MR 1185803
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322. MR 528965, DOI 10.2307/1971113
- Daniel S. Freed and Robert E. Gompf, Computer calculation of Witten’s $3$-manifold invariant, Comm. Math. Phys. 141 (1991), no. 1, 79–117. MR 1133261, DOI 10.1007/BF02100006
- T. P. Killingback, Quantization of $\textrm {SL}(2,\textbf {R})$ Chern-Simons theory, Comm. Math. Phys. 145 (1992), no. 1, 1–16. MR 1155281, DOI 10.1007/BF02099278
- Yozô Matsushima and Shingo Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2) 78 (1963), 365–416. MR 153028, DOI 10.2307/1970348
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- John Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137–147. MR 141115, DOI 10.2307/1970268
- Henri Moscovici and Robert J. Stanton, $R$-torsion and zeta functions for locally symmetric manifolds, Invent. Math. 105 (1991), no. 1, 185–216. MR 1109626, DOI 10.1007/BF01232263
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322. MR 528965, DOI 10.2307/1971113
- James R. Munkres, Elementary differential topology, Annals of Mathematics Studies, No. 54, Princeton University Press, Princeton, N.J., 1963. Lectures given at Massachusetts Institute of Technology, Fall, 1961. MR 0163320, DOI 10.1515/9781400882656
- M. S. Raghunathan, On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math. 87 (1965), 103–139. MR 173730, DOI 10.2307/2373227
- D. B. Ray and I. M. Singer, $R$-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145–210. MR 295381, DOI 10.1016/0001-8708(71)90045-4
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- A. S. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1977/78), no. 3, 247–252. MR 676337, DOI 10.1007/BF00406412
- R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR 0237943
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772, DOI 10.1007/BF01217730
- Edward Witten, $2+1$-dimensional gravity as an exactly soluble system, Nuclear Phys. B 311 (1988/89), no. 1, 46–78. MR 974271, DOI 10.1016/0550-3213(88)90143-5
- Edward Witten, Quantization of Chern-Simons gauge theory with complex gauge group, Comm. Math. Phys. 137 (1991), no. 1, 29–66. MR 1099255, DOI 10.1007/BF02099116
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc. 6 (1993), 721-753
- MSC: Primary 58G26; Secondary 57Q10, 58G11
- DOI: https://doi.org/10.1090/S0894-0347-1993-1189689-4
- MathSciNet review: 1189689