## The unconditional basic sequence problem

HTML articles powered by AMS MathViewer

- by W. T. Gowers and B. Maurey PDF
- J. Amer. Math. Soc.
**6**(1993), 851-874 Request permission

## Abstract:

We construct a Banach space that does not contain any infinite unconditional basic sequence and investigate further properties of this space. For example, it has no subspace that can be written as a topological direct sum of two infinite-dimensional spaces. This property implies that every operator on the space is a strictly singular perturbation of a multiple of the identity. In particular, it is either strictly singular or Fredholm with index zero. This implies that the space is not isomorphic to any proper subspace.## References

- C. Bessaga and A. Pelczyński,

*A generalization of results of R. C. James concerning absolute bases in Banach spaces*, Studia Math.

**17**(1958), 165-174. P. G. Casazza and T. Shura,

*Tsirelson’s space*, Lecture Notes in Math., vol. 1363, Springer Verlag, New York, 1988. N. Dunford and J. Schwartz,

*Linear operators, Vol*. I, Interscience, New York, 1958. P. Enflo,

*A counterexample to the approximation property in Banach spaces*, Acta Math.

**130**(1973), 309-317. W. T. Gowers,

*A solution to Banach’s hyperplane problem*, preprint. —,

*A solution to the Schroeder-Bernstein problem for Banach spaces*, preprint. J. Lindenstrauss,

*Some aspects of the theory of Banach spaces*, Adv. Math.

**5**(1970), 159-180. J. Lindenstrauss and A. Pelczyński,

*Contributions to the theory of classical Banach spaces*, J. Funct. Anal.

**8**(1971), 225-249. J. Lindenstrauss and L. Tzafriri,

*Classical Banach spaces, Vol*. I, Springer-Verlag, New York, 1977. B. Maurey and H. P. Rosenthal,

*Normalized weakly null sequences with no unconditional subsequence*, Studia Math.

**61**(1977), 77-98. E. Odell and T. Schlumprecht,

*The distortion problem*, preprint. T. Schlumprecht,

*An arbitrarily distortable Banach space*, Israel J. Math.

**76**(1991), 81-95. —,

*A complementably minimal Banach space not containing*${c_0}$

*or*${\ell _p}$, preprint. B. S. Tsirelson,

*Not every Banach space contains*${\ell _p}$

*or*${c_0}$, Funct. Anal. Appl.

**8**(1974), 138-141.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**6**(1993), 851-874 - MSC: Primary 46Bxx
- DOI: https://doi.org/10.1090/S0894-0347-1993-1201238-0
- MathSciNet review: 1201238