Nonconnected moduli spaces of positive sectional curvature metrics
HTML articles powered by AMS MathViewer
- by Matthias Kreck and Stephan Stolz
- J. Amer. Math. Soc. 6 (1993), 825-850
- DOI: https://doi.org/10.1090/S0894-0347-1993-1205446-4
- PDF | Request permission
Abstract:
For a closed manifold $M$ let $\Re _{{\text {sec}}}^ + (M)$ (resp. $\Re _{{\text {Ric}}}^ + (M)$) be the space of Riemannian metrics on $M$ with positive sectional (resp. Ricci) curvature and let ${\text {Diff}}(M)$ be the diffeomorphism group of $M$, which acts on these spaces. We construct examples of $7$-dimensional manifolds for which the moduli space $\Re _{{\text {sec}}}^ + (M)/{\text {Diff}}(M)$ is not connected and others for which $\Re _{{\text {Ric}}}^ + (M)/{\text {Diff}}(M)$ has infinitely many connected components. The examples are obtained by analyzing a family of positive sectional curvature metrics on homogeneous spaces constructed by Aloff and Wallach, on which $SU(3)$ acts transitively, respectively a family of positive Einstein metrics constructed by Wang and Ziller on homogeneous spaces, on which $SU(3) \times SU(2) \times U(1)$ acts transitively.References
- D. W. Anderson, E. H. Brown Jr., and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math. (2) 86 (1967), 271–298. MR 219077, DOI 10.2307/1970690
- Michael Atiyah and Friedrich Hirzebruch, Spin-manifolds and group actions, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 18–28. MR 0278334
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- Simon Aloff and Nolan R. Wallach, An infinite family of distinct $7$-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–97. MR 370624, DOI 10.1090/S0002-9904-1975-13649-4
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8 J. M. Boardman, Stable homotopy theory, mimeographed notes, Warwick (1966). A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, Amer. J. Math. 80 (1958), 458-538;II, Amer. J. Math. 81 (1959), 315-382.
- Rodney Carr, Construction of manifolds of positive scalar curvature, Trans. Amer. Math. Soc. 307 (1988), no. 1, 63–74. MR 936805, DOI 10.1090/S0002-9947-1988-0936805-7
- Sylvain E. Cappell and Julius L. Shaneson, The topology of linear representations of groups and subgroups, Amer. J. Math. 104 (1982), no. 4, 773–778. MR 667533, DOI 10.2307/2374203
- PawełGajer, Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5 (1987), no. 3, 179–191. MR 962295, DOI 10.1007/BF00128019
- Michael Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179–195. MR 630949, DOI 10.1007/BF02566208
- Mikhael Gromov and H. Blaine Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434. MR 577131, DOI 10.2307/1971103
- Mikhael Gromov and H. Blaine Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83–196 (1984). MR 720933
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153–179. MR 862046
- F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956 (German). MR 0082174
- Nigel Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1–55. MR 358873, DOI 10.1016/0001-8708(74)90021-8
- Matthias Kreck, Bordism of diffeomorphisms and related topics, Lecture Notes in Mathematics, vol. 1069, Springer-Verlag, Berlin, 1984. With an appendix by Neal W. Stoltzfus. MR 755877, DOI 10.1007/BFb0101007
- Matthias Kreck and Stephan Stolz, A diffeomorphism classification of $7$-dimensional homogeneous Einstein manifolds with $\textrm {SU}(3)\times \textrm {SU}(2)\times \textrm {U}(1)$-symmetry, Ann. of Math. (2) 127 (1988), no. 2, 373–388. MR 932303, DOI 10.2307/2007059
- Matthias Kreck and Stephan Stolz, Some nondiffeomorphic homeomorphic homogeneous $7$-manifolds with positive sectional curvature, J. Differential Geom. 33 (1991), no. 2, 465–486. MR 1094466
- André Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7–9 (French). MR 156292
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554 S. Ochanine, Signature modulo 16, invariants de Kervaire généralisé et nombres caractéristiques dans la $K$-théorie reélle, Bull. Soc. Math. France 5 (1981).
- R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159–183. MR 535700, DOI 10.1007/BF01647970
- Stephan Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 136 (1992), no. 3, 511–540. MR 1189863, DOI 10.2307/2946598
- M. Wang and W. Ziller, Einstein metrics with positive scalar curvature, Curvature and topology of Riemannian manifolds (Katata, 1985) Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp. 319–336. MR 859594, DOI 10.1007/BFb0075665
- Edward Witten, Search for a realistic Kaluza-Klein theory, Nuclear Phys. B 186 (1981), no. 3, 412–428. MR 624244, DOI 10.1016/0550-3213(81)90021-3
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc. 6 (1993), 825-850
- MSC: Primary 53C20; Secondary 53C21, 57R20, 58D27, 58G10
- DOI: https://doi.org/10.1090/S0894-0347-1993-1205446-4
- MathSciNet review: 1205446