Invariant differential operators on a reductive Lie algebra and Weyl group representations
Author:
Nolan R. Wallach
Journal:
J. Amer. Math. Soc. 6 (1993), 779-816
MSC:
Primary 17B40; Secondary 17B35, 20C15, 22E47
DOI:
https://doi.org/10.1090/S0894-0347-1993-1212243-2
MathSciNet review:
1212243
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Dan Barbasch and David A. Vogan Jr., The local structure of characters, J. Functional Analysis 37 (1980), no. 1, 27–55. MR 576644, DOI https://doi.org/10.1016/0022-1236%2880%2990026-9
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), no. 2, 153–199. MR 656661, DOI https://doi.org/10.1007/BF01457308
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), no. 2, 350–382. MR 691809, DOI https://doi.org/10.1016/0021-8693%2883%2990006-6
- I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 26–40. MR 0320735
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic $D$-modules, Perspectives in Mathematics, vol. 2, Academic Press, Inc., Boston, MA, 1987. MR 882000
- Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87–120. MR 84104, DOI https://doi.org/10.2307/2372387
- Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI https://doi.org/10.2307/2373023
- Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI https://doi.org/10.2307/2373023 L. Hörmander, The analysis of linear partial differential operators. I, Springer-Verlag, Berlin, 1990.
- R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), no. 2, 327–358. MR 732550, DOI https://doi.org/10.1007/BF01388568
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI https://doi.org/10.2307/2373130
- R. Ranga Rao, Orbital integrals in reductive groups, Ann. of Math. (2) 96 (1972), 505–510. MR 320232, DOI https://doi.org/10.2307/1970822
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI https://doi.org/10.1007/BF01390009
- V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, Vol. 576, Springer-Verlag, Berlin-New York, 1977. MR 0473111
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
Retrieve articles in Journal of the American Mathematical Society with MSC: 17B40, 17B35, 20C15, 22E47
Retrieve articles in all journals with MSC: 17B40, 17B35, 20C15, 22E47
Additional Information
Keywords:
Research partially supported by an NSF summer grant
Article copyright:
© Copyright 1993
American Mathematical Society