$L^2$-cohomology, Nash blowup and semismall resolutions
HTML articles powered by AMS MathViewer
- by Boris Youssin PDF
- J. Amer. Math. Soc. 6 (1993), 817-824 Request permission
Abstract:
We study the structure of ${L^2}$-forms on singular complex projective varieties with respect to Fubini-Studi metric using resolution of singularities. We show that a semismall resolution of $X$ has to be small if it can be mapped onto the Nash blowup of $X$.References
- J. Cheeger, M. Goresky, and R. MacPherson, ${L^2}$-cohomology and intersection cohomology of singular algebraic varieties, Seminar on differential geometry (S. T. Yau, ed.), Princeton Univ. Press, Princeton, NJ, 1982, pp. 303-340.
W. C. Hsiang and V. Pati, ${L^2}$-cohomology of normal algebraic surfaces. I, Invent. Math. 81 (1985), 395-412.
M. Goresky and R. MacPherson, Intersection homology. II, Invent. Math. 71 (1983), 77-129.
T. Ohsawa, On the ${L^2}$cohomology of complex spaces, Math. Z. 209 (1992), 519-530.
B. Teissier, Variétés polaires. II: Multiplicités polaires, sections planes, et conditions de Whitney, Actes de la conférance de géometrie algébrique á la Rábida, Lecture Notes in Math., vol. 961, 1981, pp. 314-491.
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: J. Amer. Math. Soc. 6 (1993), 817-824
- MSC: Primary 32S45; Secondary 14E15, 32S60
- DOI: https://doi.org/10.1090/S0894-0347-1993-1213798-4
- MathSciNet review: 1213798