Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity
HTML articles powered by AMS MathViewer
- by L. C. Evans and S. Müller
- J. Amer. Math. Soc. 7 (1994), 199-219
- DOI: https://doi.org/10.1090/S0894-0347-1994-1220787-3
- PDF | Request permission
Abstract:
We prove that certain quadratic expressions involving the gradient of a weakly superharmonic function in ${\mathbb {R}^2}$ belong to a local Hardy space. As an application we provide a new proof of J.-M. Delort’s convergence theorem for solutions of the two-dimensional Euler equations with vorticities of one sign.References
- S. Alinhac, Un phénomène de concentration évanescente pour des flots non-stationnaires incompressibles en dimension deux, Comm. Math. Phys. 127 (1990), no. 3, 585–596 (French, with English summary). MR 1040896
- Ronald R. Coifman, Pierre-Louis Lions, Yves Meyer, and Stephen Semmes, Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 18, 945–949 (French, with English summary). MR 1054740
- Jean-Marc Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), no. 3, 553–586 (French). MR 1102579, DOI 10.1090/S0894-0347-1991-1102579-6
- Ronald J. DiPerna and Andrew Majda, Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow, J. Amer. Math. Soc. 1 (1988), no. 1, 59–95. MR 924702, DOI 10.1090/S0894-0347-1988-0924702-6
- Ronald J. DiPerna and Andrew J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), no. 4, 667–689. MR 877643
- Ronald J. DiPerna and Andrew J. Majda, Concentrations in regularizations for $2$-D incompressible flow, Comm. Pure Appl. Math. 40 (1987), no. 3, 301–345. MR 882068, DOI 10.1002/cpa.3160400304
- Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics, vol. 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1034481, DOI 10.1090/cbms/074
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- J. Frehse, Capacity methods in the theory of partial differential equations, Jahresber. Deutsch. Math.-Verein. 84 (1982), no. 1, 1–44. MR 644068
- John B. Garnett and Peter W. Jones, The distance in BMO to $L^{\infty }$, Ann. of Math. (2) 108 (1978), no. 2, 373–393. MR 506992, DOI 10.2307/1971171
- John B. Garnett and Peter W. Jones, BMO from dyadic BMO, Pacific J. Math. 99 (1982), no. 2, 351–371. MR 658065
- David Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), no. 1, 27–42. MR 523600
- Peter W. Jones and Jean-Lin Journé, On weak convergence in $H^1(\textbf {R}^d)$, Proc. Amer. Math. Soc. 120 (1994), no. 1, 137–138. MR 1159172, DOI 10.1090/S0002-9939-1994-1159172-3
- Tosio Kato, On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal. 25 (1967), 188–200. MR 211057, DOI 10.1007/BF00251588
- Robert Krasny, Computation of vortex sheet roll-up, Vortex methods (Los Angeles, CA, 1987) Lecture Notes in Math., vol. 1360, Springer, Berlin, 1988, pp. 9–22. MR 979557, DOI 10.1007/BFb0089767
- Robert H. Latter, A characterization of $H^{p}(\textbf {R}^{n})$ in terms of atoms, Studia Math. 62 (1978), no. 1, 93–101. MR 482111, DOI 10.4064/sm-62-1-93-101 H. Lopes, An estimate on the Hausdorff dimension of a concentration set for the incompressible Euler equations, Thesis, UC Berkeley, 1991.
- Andrew Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S187–S220. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861488, DOI 10.1002/cpa.3160390711
- Vladimir Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal. 3 (1993), no. 4, 343–401. MR 1231007, DOI 10.1007/BF02921318
- Friedmar Schulz, Regularity theory for quasilinear elliptic systems and Monge-Ampère equations in two dimensions, Lecture Notes in Mathematics, vol. 1445, Springer-Verlag, Berlin, 1990. MR 1079936, DOI 10.1007/BFb0098277
- Stephen Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations 19 (1994), no. 1-2, 277–319. MR 1257006, DOI 10.1080/03605309408821017
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
- Akihito Uchiyama, The construction of certain BMO functions and the corona problem, Pacific J. Math. 99 (1982), no. 1, 183–204. MR 651495 V. I. Yudovich, Non-Stationary flow of an ideal incompressible liquid, Zh. Vych. Math. 3 (1963), 1032-1066. (Russian)
- Yu Xi Zheng, Concentration-cancellation for the velocity fields in two-dimensional incompressible fluid flows, Comm. Math. Phys. 135 (1991), no. 3, 581–594. MR 1091579
- Yu Xi Zheng, Regularity of weak solutions to a two-dimensional modified Dirac-Klein-Gordon system of equations, Comm. Math. Phys. 151 (1993), no. 1, 67–87. MR 1201656
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: J. Amer. Math. Soc. 7 (1994), 199-219
- MSC: Primary 35Q30; Secondary 46E30, 76C05
- DOI: https://doi.org/10.1090/S0894-0347-1994-1220787-3
- MathSciNet review: 1220787