Iteration trees
HTML articles powered by AMS MathViewer
- by D. A. Martin and J. R. Steel
- J. Amer. Math. Soc. 7 (1994), 1-73
- DOI: https://doi.org/10.1090/S0894-0347-1994-1224594-7
- PDF | Request permission
References
- Stewart Baldwin, Generalizing the Mahlo hierarchy, with applications to the Mitchell models, Ann. Pure Appl. Logic 25 (1983), no. 2, 103–127. MR 725730, DOI 10.1016/0168-0072(83)90010-6
- Stewart Baldwin, Between strong and superstrong, J. Symbolic Logic 51 (1986), no. 3, 547–559. MR 853838, DOI 10.2307/2274012 Anthony Dodd, Strong cardinals, unpublished notes.
- A. Dodd and R. Jensen, The core model, Ann. Math. Logic 20 (1981), no. 1, 43–75. MR 611394, DOI 10.1016/0003-4843(81)90011-5
- Tony Dodd and Ronald Jensen, The covering lemma for $K$, Ann. Math. Logic 22 (1982), no. 1, 1–30. MR 661475, DOI 10.1016/0003-4843(82)90013-4
- Tony Dodd and Ronald Jensen, The covering lemma for $K$, Ann. Math. Logic 22 (1982), no. 1, 1–30. MR 661475, DOI 10.1016/0003-4843(82)90013-4
- M. Foreman, M. Magidor, and S. Shelah, Martin’s maximum, saturated ideals, and nonregular ultrafilters. I, Ann. of Math. (2) 127 (1988), no. 1, 1–47. MR 924672, DOI 10.2307/1971415
- Haim Gaifman, Elementary embeddings of models of set-theory and certain subtheories, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1974, pp. 33–101. MR 0376347 Kurt Gödel, Consistency-proof for the Generalized Continuum-Hypothesis, Proc. Nat. Acad. Sci. U.S.A. 25 (1939), 220-224.
- R. Björn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI 10.1016/0003-4843(72)90001-0 Ronald B. Jensen, Reflections on a paper of Steel, unpublished notes.
- Alexander S. Kechris, Donald A. Martin, and Robert M. Solovay, Introduction to $Q$-theory, Cabal seminar 79–81, Lecture Notes in Math., vol. 1019, Springer, Berlin, 1983, pp. 199–282. MR 730595, DOI 10.1007/BFb0071702
- Kenneth Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179–227. MR 277346, DOI 10.1016/0003-4843(70)90013-6
- D. A. Martin and R. M. Solovay, A basis theorem for $\sum _3^1$ sets of reals, Ann. of Math. (2) 89 (1969), 138–159. MR 255391, DOI 10.2307/1970813
- Donald A. Martin and John R. Steel, A proof of projective determinacy, J. Amer. Math. Soc. 2 (1989), no. 1, 71–125. MR 955605, DOI 10.1090/S0894-0347-1989-0955605-X
- William J. Mitchell, Sets constructible from sequences of ultrafilters, J. Symbolic Logic 39 (1974), 57–66. MR 344123, DOI 10.2307/2272343
- Maurice Boffa, Dirk van Dalen, and Kenneth McAloon (eds.), Logic Colloquium ’78, Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 567663
- William J. Mitchell, Sets constructed from sequences of measures: revisited, J. Symbolic Logic 48 (1983), no. 3, 600–609. MR 716621, DOI 10.2307/2273452
- William J. Mitchell, The core model for sequences of measures. I, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 2, 229–260. MR 735366, DOI 10.1017/S030500410006151X —, The core model for sequences of measures. II, unpublished.
- William J. Mitchell and John R. Steel, Fine structure and iteration trees, Lecture Notes in Logic, vol. 3, Springer-Verlag, Berlin, 1994. MR 1300637, DOI 10.1007/978-3-662-21903-4
- Saharon Shelah and Hugh Woodin, Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable, Israel J. Math. 70 (1990), no. 3, 381–394. MR 1074499, DOI 10.1007/BF02801471
- Jack Silver, The consistency of the $\textrm {GCH}$ with the existence of a measurable cardinal, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 391–395. MR 0278937
- Jack H. Silver, Measurable cardinals and $\Delta ^{1}_{3}$ well-orderings, Ann. of Math. (2) 94 (1971), 414–446. MR 299469, DOI 10.2307/1970765
- Robert M. Solovay, On the cardinality of $\sum _{2}^{1}$ sets of reals, Foundations of Mathematics (Symposium Commemorating Kurt Gödel, Columbus, Ohio, 1966) Springer, New York, 1969, pp. 58–73. MR 0277382 —, The fine structure of $L[\mu ]$, unpublished. John R. Steel, Large cardinals and $\Delta _3^1$ wellorders, unpublished notes.
- J. R. Steel, Inner models with many Woodin cardinals, Ann. Pure Appl. Logic 65 (1993), no. 2, 185–209. MR 1257469, DOI 10.1016/0168-0072(93)90037-E
- W. Hugh Woodin, Supercompact cardinals, sets of reals, and weakly homogeneous trees, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no. 18, 6587–6591. MR 959110, DOI 10.1073/pnas.85.18.6587
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: J. Amer. Math. Soc. 7 (1994), 1-73
- MSC: Primary 03E55; Secondary 03E15, 03E35, 03E45
- DOI: https://doi.org/10.1090/S0894-0347-1994-1224594-7
- MathSciNet review: 1224594