How many eigenvalues of a random matrix are real?
Authors:
Alan Edelman, Eric Kostlan and Michael Shub
Journal:
J. Amer. Math. Soc. 7 (1994), 247-267
MSC:
Primary 60F99; Secondary 15A18, 62H99
DOI:
https://doi.org/10.1090/S0894-0347-1994-1231689-0
MathSciNet review:
1231689
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be an
matrix whose elements are independent random variables with standard normal distributions. As
, the expected number of real eigenvalues is asymptotic to
. We obtain a closed form expression for the expected number of real eigenvalues for finite
, and a formula for the density of a real eigenvalue for finite
. Asymptotically, a real normalized eigenvalue
of such a random matrix is uniformly distributed on the interval [-1, 1]. Analogous, but strikingly different, results are presented for the real generalized eigenvalues. We report on numerical experiments confirming these results and suggesting that the assumption of normality is not important for the asymptotic results.
- [1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover Publications, New York, 1965.
- [2] A. T. Bharucha-Reid and M. Sambandham, Random polynomials, Probability and Mathematical Statistics, Academic Press, Inc., Orlando, FL, 1986. MR 856019
- [3] J. W. Demmel, The probability that a numerical analysis problem is difficult, Math. Comp. 50 (1988), 449-480.
- [4] J. W. Demmel and A. McKenney, A test matrix generation suite, Argonne National Lab, MCS-P69-0389 and LAPACK working note 9. Available from netlib@na-net.ornl.gov or xnetlib.
- [5] Alan Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl. 9 (1988), no. 4, 543–560. MR 964668, https://doi.org/10.1137/0609045
- [6] -, Eigenvalues and condition numbers of random matrices, Ph.D. thesis, Department of Mathematics, Mass. Inst. of Technology, 1989.
- [7] Alan Edelman, The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type, Linear Algebra Appl. 159 (1991), 55–80. MR 1133335, https://doi.org/10.1016/0024-3795(91)90076-9
- [8] Alan Edelman, On the distribution of a scaled condition number, Math. Comp. 58 (1992), no. 197, 185–190. MR 1106966, https://doi.org/10.1090/S0025-5718-1992-1106966-2
- [9] -, Random matrix eigenvalues meet numerical linear algebra, SIAM News 24 (November 1991), 11.
- [10] -, Bibliography of random eigenvalue literature, available electronically by anonymous FTP from math.berkeley.edu in the directory /pub/edelman.
- [Ed]
-, The circular law and the probability that a random matrix has
real eigenvalues. (submitted to J. Amer. Math. Soc.)
- [11] Jean Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Mathematical Phys. 6 (1965), 440–449. MR 173726, https://doi.org/10.1063/1.1704292
- [12] V. L. Girko, The circular law, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 669–679 (Russian). MR 773436
- [13] V. L. Girko, Theory of random determinants, Mathematics and its Applications (Soviet Series), vol. 45, Kluwer Academic Publishers Group, Dordrecht, 1990. Translated from the Russian. MR 1080966
- [14] Gene H. Golub and Charles F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR 1002570
- [15] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., 1980. Corrected and enlarged edition edited by Alan Jeffrey; Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin]; Translated from the Russian. MR 582453
- [16] Rameshwar D. Gupta and Donald St. P. Richards, Hypergeometric functions of scalar matrix argument are expressible in terms of classical hypergeometric functions, SIAM J. Math. Anal. 16 (1985), no. 4, 852–858. MR 793927, https://doi.org/10.1137/0516064
- [17] Chii-Ruey Hwang, A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries, Random matrices and their applications (Brunswick, Maine, 1984) Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 145–152. MR 841088, https://doi.org/10.1090/conm/050/841088
- [18] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314–320. MR 7812, https://doi.org/10.1090/S0002-9904-1943-07912-8
- [19] M. Kac, On the average number of real roots of a random algebraic equation. II, Proc. London Math. Soc. (2) 50 (1949), 390–408. MR 30713, https://doi.org/10.1112/plms/s2-50.5.390
- [20] Eric Kostlan, On the spectra of Gaussian matrices, Linear Algebra Appl. 162/164 (1992), 385–388. Directions in matrix theory (Auburn, AL, 1990). MR 1148410, https://doi.org/10.1016/0024-3795(92)90386-O
- [21] E. Kostlan, On the distribution of roots of random polynomials, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990) Springer, New York, 1993, pp. 419–431. MR 1246137
- [22] Nils Lehmann and Hans-Jürgen Sommers, Eigenvalue statistics of random real matrices, Phys. Rev. Lett. 67 (1991), no. 8, 941–944. MR 1121461, https://doi.org/10.1103/PhysRevLett.67.941
- [23] S. H. Lui, private communication, 1992.
- [24] Madan Lal Mehta, Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991. MR 1083764
- [25] Robb J. Muirhead, Aspects of multivariate statistical theory, John Wiley & Sons, Inc., New York, 1982. Wiley Series in Probability and Mathematical Statistics. MR 652932
- [26] Luis A. Santaló, Integral geometry and geometric probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac; Encyclopedia of Mathematics and its Applications, Vol. 1. MR 0433364
- [27] M. Shub and S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 267–285. MR 1230872, https://doi.org/10.1007/978-1-4612-2752-6_19
- [28] H.-J. Sommers, A. Crisanti, H. Sompolinsky, and Y. Stein, Spectrum of large random asymmetric matrices, Phys. Rev. Lett. 60 (1988), no. 19, 1895–1898. MR 948613, https://doi.org/10.1103/PhysRevLett.60.1895
- [29] J. Spanier and K. B. Oldham, An atlas of functions, Hemisphere Publishing, Washington, 1987.
Retrieve articles in Journal of the American Mathematical Society with MSC: 60F99, 15A18, 62H99
Retrieve articles in all journals with MSC: 60F99, 15A18, 62H99
Additional Information
DOI:
https://doi.org/10.1090/S0894-0347-1994-1231689-0
Article copyright:
© Copyright 1994
American Mathematical Society