Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

The inverse eigenvalue problem for real symmetric Toeplitz matrices


Author: H. J. Landau
Journal: J. Amer. Math. Soc. 7 (1994), 749-767
MSC: Primary 15A18; Secondary 15A21, 15A60, 47B35
DOI: https://doi.org/10.1090/S0894-0347-1994-1234570-6
MathSciNet review: 1234570
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every set of $n$ real numbers is the set of eigenvalues of an $n \times n$ real symmetric Toeplitz matrix; the matrix has a certain additional regularity. The argument—based on the topological degree—is nonconstructive.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 15A18, 15A21, 15A60, 47B35

Retrieve articles in all journals with MSC: 15A18, 15A21, 15A60, 47B35


Additional Information

Keywords: Toeplitz matrices, inverse eigenvalue problem, regular Toeplitz matrix
Article copyright: © Copyright 1994 American Mathematical Society