On rigidity, limit sets, and end invariants of hyperbolic $3$-manifolds
HTML articles powered by AMS MathViewer
- by Yair N. Minsky
- J. Amer. Math. Soc. 7 (1994), 539-588
- DOI: https://doi.org/10.1090/S0894-0347-1994-1257060-3
- PDF | Request permission
Abstract:
Thurston’s ending lamination conjecture states that a hyperbolic manifold is uniquely determined by a collection of Riemann surfaces and geodesic laminations that describe the asymptotic geometry of its ends. We prove this conjecture for the case of manifolds whose fundamental group is freely indecomposable, and which admit a positive lower bound on injectivity radii. The techniques of the proof apply to show that a Kleinian surface group admitting a positive lower bound on injectivity radii is continuously semiconjugate to a Fuchsian group. This extends results of Cannon and Thurston. A further consequence is a rigidity theorem for surface groups satisfying the injectivity radius condition, namely that two such groups whose actions on the sphere are conjugate by a homeomorphism that is conformal on the domains of discontinuity must be conjugate by a Möbius transformation.References
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI 10.2307/1970141
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044
- William Abikoff, Kleinian groups—geometrically finite and geometrically perverse, Geometry of group representations (Boulder, CO, 1987) Contemp. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1988, pp. 1–50. MR 957510, DOI 10.1090/conm/074/957510
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Lipman Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94–97. MR 111834, DOI 10.1090/S0002-9904-1960-10413-2
- Lipman Bers, Spaces of Kleinian groups, Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Springer, Berlin, 1970, pp. 9–34. MR 0271333
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- James W. Cannon, The theory of negatively curved spaces and groups, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 315–369. MR 1130181
- Richard D. Canary, Ends of hyperbolic $3$-manifolds, J. Amer. Math. Soc. 6 (1993), no. 1, 1–35. MR 1166330, DOI 10.1090/S0894-0347-1993-1166330-8 A. J. Casson, Automorphisms of surfaces after Nielsen and Thurston, Notes by S. A. Bleiler, U. T. Austin, 1982.
- Andrew J. Casson and Steven A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988. MR 964685, DOI 10.1017/CBO9780511623912
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994
- R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3–92. MR 903850
- James W. Cannon and William P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315–1355. MR 2326947, DOI 10.2140/gt.2007.11.1315
- D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR 903852
- Sérgio R. Fenley, Asymptotic properties of depth one foliations in hyperbolic $3$-manifolds, J. Differential Geom. 36 (1992), no. 2, 269–313. MR 1180384
- William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205–218. MR 568933, DOI 10.1007/BF01418926 A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, vol. 66-67, Asterisque, 1979.
- Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR 903027 E. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’aprés Mikhael Gromov, Birkhaüser, Basel, 1990.
- Frederick P. Gardiner and Howard Masur, Extremal length geometry of Teichmüller space, Complex Variables Theory Appl. 16 (1991), no. 2-3, 209–237. MR 1099913, DOI 10.1080/17476939108814480
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- A. E. Hatcher, Measured lamination spaces for surfaces, from the topological viewpoint, Topology Appl. 30 (1988), no. 1, 63–88. MR 964063, DOI 10.1016/0166-8641(88)90081-8
- John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), no. 3-4, 221–274. MR 523212, DOI 10.1007/BF02395062
- Steven P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), no. 1, 23–41. MR 559474, DOI 10.1016/0040-9383(80)90029-4
- Steven P. Kerckhoff, Lines of minima in Teichmüller space, Duke Math. J. 65 (1992), no. 2, 187–213. MR 1150583, DOI 10.1215/S0012-7094-92-06507-0
- Irwin Kra, On spaces of Kleinian groups, Comment. Math. Helv. 47 (1972), 53–69. MR 306485, DOI 10.1007/BF02566788
- Gilbert Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), no. 2, 119–135. MR 683752, DOI 10.1016/0040-9383(83)90023-X
- Albert Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462. MR 349992, DOI 10.2307/1971059
- Howard Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992), no. 3, 387–442. MR 1167101, DOI 10.1215/S0012-7094-92-06613-0
- Bernard Maskit, On boundaries of Teichmüller spaces and on Kleinian groups. II, Ann. of Math. (2) 91 (1970), 607–639. MR 297993, DOI 10.2307/1970640
- Bernard Maskit, Self-maps on Kleinian groups, Amer. J. Math. 93 (1971), 840–856. MR 291453, DOI 10.2307/2373474
- Howard Masur, Uniquely ergodic quadratic differentials, Comment. Math. Helv. 55 (1980), no. 2, 255–266. MR 576605, DOI 10.1007/BF02566685
- Howard Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982), no. 1, 183–190. MR 650376
- Bernard Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 381–386. MR 802500, DOI 10.5186/aasfm.1985.1042
- Curt McMullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989), no. 1, 95–127. MR 999314, DOI 10.1007/BF01850656
- Yair N. Minsky, Harmonic maps into hyperbolic $3$-manifolds, Trans. Amer. Math. Soc. 332 (1992), no. 2, 607–632. MR 1100698, DOI 10.1090/S0002-9947-1992-1100698-9
- Yair N. Minsky, Teichmüller geodesics and ends of hyperbolic $3$-manifolds, Topology 32 (1993), no. 3, 625–647. MR 1231968, DOI 10.1016/0040-9383(93)90013-L
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004 K. Ohshika, Topologically conjugate Kleinian groups, preprint.
- Gopal Prasad, Strong rigidity of $\textbf {Q}$-rank $1$ lattices, Invent. Math. 21 (1973), 255–286. MR 385005, DOI 10.1007/BF01418789
- G. P. Scott, Compact submanifolds of $3$-manifolds, J. London Math. Soc. (2) 7 (1973), 246–250. MR 326737, DOI 10.1112/jlms/s2-7.2.246
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
- Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR 624833 W. Thurston, Hyperbolic structures on $3$-manifolds, II: surface groups and manifolds which fiber over the circle, preprint. —, Minimal stretch maps between hyperbolic surfaces, unpublished manuscript, Princeton University. —, The geometry and topology of $3$-manifolds, Princeton University lecture notes, 1982.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI 10.2307/1971277
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: J. Amer. Math. Soc. 7 (1994), 539-588
- MSC: Primary 57M50; Secondary 30C62, 30F40, 57M60, 57N10
- DOI: https://doi.org/10.1090/S0894-0347-1994-1257060-3
- MathSciNet review: 1257060