On rigidity, limit sets, and end invariants of hyperbolic $3$-manifolds
Author:
Yair N. Minsky
Journal:
J. Amer. Math. Soc. 7 (1994), 539-588
MSC:
Primary 57M50; Secondary 30C62, 30F40, 57M60, 57N10
DOI:
https://doi.org/10.1090/S0894-0347-1994-1257060-3
MathSciNet review:
1257060
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Thurston’s ending lamination conjecture states that a hyperbolic manifold is uniquely determined by a collection of Riemann surfaces and geodesic laminations that describe the asymptotic geometry of its ends. We prove this conjecture for the case of manifolds whose fundamental group is freely indecomposable, and which admit a positive lower bound on injectivity radii. The techniques of the proof apply to show that a Kleinian surface group admitting a positive lower bound on injectivity radii is continuously semiconjugate to a Fuchsian group. This extends results of Cannon and Thurston. A further consequence is a rigidity theorem for surface groups satisfying the injectivity radius condition, namely that two such groups whose actions on the sphere are conjugate by a homeomorphism that is conformal on the domains of discontinuity must be conjugate by a Möbius transformation.
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI https://doi.org/10.2307/1970141
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044
- William Abikoff, Kleinian groups—geometrically finite and geometrically perverse, Geometry of group representations (Boulder, CO, 1987) Contemp. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1988, pp. 1–50. MR 957510, DOI https://doi.org/10.1090/conm/074/957510
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0357743
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
- Lipman Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94–97. MR 111834, DOI https://doi.org/10.1090/S0002-9904-1960-10413-2
- Lipman Bers, Spaces of Kleinian groups, Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Springer, Berlin, 1970, pp. 9–34. MR 0271333
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI https://doi.org/10.2307/1971388
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI https://doi.org/10.2307/1971388
- James W. Cannon, The theory of negatively curved spaces and groups, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 315–369. MR 1130181
- Richard D. Canary, Ends of hyperbolic $3$-manifolds, J. Amer. Math. Soc. 6 (1993), no. 1, 1–35. MR 1166330, DOI https://doi.org/10.1090/S0894-0347-1993-1166330-8 A. J. Casson, Automorphisms of surfaces after Nielsen and Thurston, Notes by S. A. Bleiler, U. T. Austin, 1982.
- Andrew J. Casson and Steven A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988. MR 964685
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994
- R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3–92. MR 903850
- James W. Cannon and William P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315–1355. MR 2326947, DOI https://doi.org/10.2140/gt.2007.11.1315
- D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR 903852
- Sérgio R. Fenley, Asymptotic properties of depth one foliations in hyperbolic $3$-manifolds, J. Differential Geom. 36 (1992), no. 2, 269–313. MR 1180384
- William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205–218. MR 568933, DOI https://doi.org/10.1007/BF01418926 A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, vol. 66-67, Asterisque, 1979.
- Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR 903027 E. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’aprés Mikhael Gromov, Birkhaüser, Basel, 1990.
- Frederick P. Gardiner and Howard Masur, Extremal length geometry of Teichmüller space, Complex Variables Theory Appl. 16 (1991), no. 2-3, 209–237. MR 1099913, DOI https://doi.org/10.1080/17476939108814480
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI https://doi.org/10.1007/978-1-4613-9586-7_3
- A. E. Hatcher, Measured lamination spaces for surfaces, from the topological viewpoint, Topology Appl. 30 (1988), no. 1, 63–88. MR 964063, DOI https://doi.org/10.1016/0166-8641%2888%2990081-8
- John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), no. 3-4, 221–274. MR 523212, DOI https://doi.org/10.1007/BF02395062
- Steven P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), no. 1, 23–41. MR 559474, DOI https://doi.org/10.1016/0040-9383%2880%2990029-4
- Steven P. Kerckhoff, Lines of minima in Teichmüller space, Duke Math. J. 65 (1992), no. 2, 187–213. MR 1150583, DOI https://doi.org/10.1215/S0012-7094-92-06507-0
- Irwin Kra, On spaces of Kleinian groups, Comment. Math. Helv. 47 (1972), 53–69. MR 306485, DOI https://doi.org/10.1007/BF02566788
- Gilbert Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), no. 2, 119–135. MR 683752, DOI https://doi.org/10.1016/0040-9383%2883%2990023-X
- Albert Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462. MR 349992, DOI https://doi.org/10.2307/1971059
- Howard Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992), no. 3, 387–442. MR 1167101, DOI https://doi.org/10.1215/S0012-7094-92-06613-0
- Bernard Maskit, On boundaries of Teichmüller spaces and on Kleinian groups. II, Ann. of Math. (2) 91 (1970), 607–639. MR 297993, DOI https://doi.org/10.2307/1970640
- Bernard Maskit, Self-maps on Kleinian groups, Amer. J. Math. 93 (1971), 840–856. MR 291453, DOI https://doi.org/10.2307/2373474
- Howard Masur, Uniquely ergodic quadratic differentials, Comment. Math. Helv. 55 (1980), no. 2, 255–266. MR 576605, DOI https://doi.org/10.1007/BF02566685
- Howard Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982), no. 1, 183–190. MR 650376
- Bernard Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 381–386. MR 802500, DOI https://doi.org/10.5186/aasfm.1985.1042
- Curt McMullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989), no. 1, 95–127. MR 999314, DOI https://doi.org/10.1007/BF01850656
- Yair N. Minsky, Harmonic maps into hyperbolic $3$-manifolds, Trans. Amer. Math. Soc. 332 (1992), no. 2, 607–632. MR 1100698, DOI https://doi.org/10.1090/S0002-9947-1992-1100698-9
- Yair N. Minsky, Teichmüller geodesics and ends of hyperbolic $3$-manifolds, Topology 32 (1993), no. 3, 625–647. MR 1231968, DOI https://doi.org/10.1016/0040-9383%2893%2990013-L
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. MR 0385004 K. Ohshika, Topologically conjugate Kleinian groups, preprint.
- Gopal Prasad, Strong rigidity of ${\bf Q}$-rank $1$ lattices, Invent. Math. 21 (1973), 255–286. MR 385005, DOI https://doi.org/10.1007/BF01418789
- G. P. Scott, Compact submanifolds of $3$-manifolds, J. London Math. Soc. (2) 7 (1973), 246–250. MR 326737, DOI https://doi.org/10.1112/jlms/s2-7.2.246
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423
- Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR 624833 W. Thurston, Hyperbolic structures on $3$-manifolds, II: surface groups and manifolds which fiber over the circle, preprint. ---, Minimal stretch maps between hyperbolic surfaces, unpublished manuscript, Princeton University. ---, The geometry and topology of $3$-manifolds, Princeton University lecture notes, 1982.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI https://doi.org/10.1090/S0273-0979-1982-15003-0
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI https://doi.org/10.2307/1971277
Retrieve articles in Journal of the American Mathematical Society with MSC: 57M50, 30C62, 30F40, 57M60, 57N10
Retrieve articles in all journals with MSC: 57M50, 30C62, 30F40, 57M60, 57N10
Additional Information
Article copyright:
© Copyright 1994
American Mathematical Society