## Harmonic analysis and pointwise ergodic theorems for noncommuting transformations

HTML articles powered by AMS MathViewer

- by Amos Nevo PDF
- J. Amer. Math. Soc.
**7**(1994), 875-902 Request permission

## Abstract:

Let ${F_k}$ denote the free group on $k$ generators, $1 < k < \infty$, and let $S$ denote a set of free generators and their inverses. Define ${\sigma _n} \stackrel {d}{=} \frac {1}{{\# {S_n}}}{\Sigma _{w \in {S_n}}}w$, where ${S_n} = \{ w:|w| = n\}$, and $| \cdot |$ denotes the word length on ${F_k}$ induced by $S$. Let $(X, \mathcal {B}, m)$ be a probability space on which ${F_k}$ acts ergodically by measure preserving transformations. We prove a pointwise ergodic theorem for the sequence of operators $\sigma _n^\prime = \frac {1}{2}({\sigma _n} + {\sigma _{n + 1}})$ acting on ${L^2}(X)$, namely: $\sigma _n^\prime f(x) \to \int _X {f dm}$ almost everywhere, for each $f$ in ${L^2}(X)$. We also show that the sequence ${\sigma _{2n}}$ converges to a conditional expectation operator with respect to a $\sigma$-algebra which is invariant under ${F_k}$. The proof is based on the spectral theory of the (commutative) convolution subalgebra of ${\ell ^1}({F_k})$ generated by the elements ${\sigma _n}, \;n \geq 0$. We then generalize the discussion to algebras arising as a Gelfand pair associated with the group of automorphisms $G({r_1},\;{r_2})$ of a semi-homogeneous tree $T({r_1},\;{r_2})$, where ${r_1} \geq 2,\;{r_2} \geq 2,\;{r_1} + {r_2} > 4$. (The case of ${F_k}$ corresponds to that of a homogeneous tree of valency $2k$.) We prove similar pointwise ergodic theorems for two classes of subgroups of $G({r_1},\;{r_2})$. One is the class of closed noncompact boundary-transitive subgroups, including any simple algebraic group of split rank one over a local field, for example, $PS{L_2}({\mathbb {Q}_p})$. The second class is that of lattices complementing a maximal compact subgroup. We also prove a strong maximal inequality in ${L^2}(X)$ for the groups listed above, as well as a mean ergodic theorem for unitary representations of the groups (due to ${\text {Y}}$. Guivarc’h for ${F_k}$). Finally, we describe the structure and spectral theory of a noncommutative algebra which arises naturally in the present context, namely the double coset algebra associated with the subgroup of $G({r_1},\;{r_2})$ stabilizing a geometric edge. The results are applied to prove mean ergodic theorems for a family of lattices in $G({r_1},\;{r_2})$, which includes, for example, $PS{L_2}(\mathbb {Z})$.## References

- V. I. Arnold and A. L. Krylov,
- Ferdaous Bouaziz-Kellil,
*Représentations sphériques des groupes agissant transitivement sur un arbre semi-homogène*, Bull. Soc. Math. France**116**(1988), no. 3, 255–278 (French, with English summary). MR**984897** - P. Cartier,
*Harmonic analysis on trees*, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 419–424. MR**0338272** - Nelson Dunford and Jacob T. Schwartz,
*Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space*, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR**0188745** - Alex Eskin and Curt McMullen,
*Mixing, counting, and equidistribution in Lie groups*, Duke Math. J.**71**(1993), no. 1, 181–209. MR**1230290**, DOI 10.1215/S0012-7094-93-07108-6 - Hillel Furstenberg, Yitzchak Katznelson, and Benjamin Weiss,
*Ergodic theory and configurations in sets of positive density*, Mathematics of Ramsey theory, Algorithms Combin., vol. 5, Springer, Berlin, 1990, pp. 184–198. MR**1083601**, DOI 10.1007/978-3-642-72905-8_{1}3
J. Faraut, - Alessandro Figà-Talamanca and Claudio Nebbia,
*Harmonic analysis and representation theory for groups acting on homogeneous trees*, London Mathematical Society Lecture Note Series, vol. 162, Cambridge University Press, Cambridge, 1991. MR**1152801**, DOI 10.1017/CBO9780511662324 - Alessandro Figà-Talamanca and Massimo A. Picardello,
*Harmonic analysis on free groups*, Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker, Inc., New York, 1983. MR**710827** - Yves Guivarc’h,
*Généralisation d’un théorème de von Neumann*, C. R. Acad. Sci. Paris Sér. A-B**268**(1969), A1020–A1023 (French). MR**251191** - Roger E. Howe and Calvin C. Moore,
*Asymptotic properties of unitary representations*, J. Functional Analysis**32**(1979), no. 1, 72–96. MR**533220**, DOI 10.1016/0022-1236(79)90078-8 - Alessandra Iozzi,
*Harmonic analysis on the free product of two cyclic groups*, Boll. Un. Mat. Ital. B (6)**4**(1985), no. 1, 167–177 (English, with Italian summary). MR**783337**, DOI 10.1016/s0165-1889(98)00024-4 - Alessandra Iozzi and Massimo A. Picardello,
*Spherical functions on symmetric graphs*, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 344–386. MR**729363**, DOI 10.1007/BFb0069168 - N. Iwahori and H. Matsumoto,
*On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups*, Inst. Hautes Études Sci. Publ. Math.**25**(1965), 5–48. MR**185016** - Roger L. Jones,
*Ergodic averages on spheres*, J. Anal. Math.**61**(1993), 29–45. MR**1253437**, DOI 10.1007/BF02788837 - Roger Jones, Joseph Rosenblatt, and Arkady Tempelman,
*Ergodic theorems for convolutions of a measure on a group*, Illinois J. Math.**38**(1994), no. 4, 521–553. MR**1283007**
A. Kolmogoroff and G. Seliverstoff, - Hideya Matsumoto,
*Analyse harmonique dans les systèmes de Tits bornologiques de type affine*, Lecture Notes in Mathematics, Vol. 590, Springer-Verlag, Berlin-New York, 1977 (French). MR**0579177** - I. G. Macdonald,
*Spherical functions on a group of $p$-adic type*, Publications of the Ramanujan Institute, No. 2, University of Madras, Centre for Advanced Study in Mathematics, Ramanujan Institute, Madras, 1971. MR**0435301** - Amos Nevo,
*A structure theorem for boundary-transitive graphs with infinitely many ends*, Israel J. Math.**75**(1991), no. 1, 1–19. MR**1147288**, DOI 10.1007/BF02787179
—, - Amos Nevo and Elias M. Stein,
*A generalization of Birkhoff’s pointwise ergodic theorem*, Acta Math.**173**(1994), no. 1, 135–154. MR**1294672**, DOI 10.1007/BF02392571 - V. I. Oseledec,
*Markov chains, skew products and ergodic theorems for “general” dynamic systems*, Teor. Verojatnost. i Primenen.**10**(1965), 551–557 (Russian, with English summary). MR**0189123**
R. E. A. C. Paley, - Ichirô Satake,
*Theory of spherical functions on reductive algebraic groups over ${\mathfrak {p}}$-adic fields*, Inst. Hautes Études Sci. Publ. Math.**18**(1963), 5–69. MR**195863** - E. M. Stein,
*On the maximal ergodic theorem*, Proc. Nat. Acad. Sci. U.S.A.**47**(1961), 1894–1897. MR**131517**, DOI 10.1073/pnas.47.12.1894 - Elias M. Stein,
*Topics in harmonic analysis related to the Littlewood-Paley theory.*, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR**0252961** - Elias M. Stein,
*Maximal functions. I. Spherical means*, Proc. Nat. Acad. Sci. U.S.A.**73**(1976), no. 7, 2174–2175. MR**420116**, DOI 10.1073/pnas.73.7.2174 - Benjamin Weiss,
*Positive cones in Hilbert space and a maximal inequality*, Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York, 1972, pp. 353–358. MR**0340555**

*Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in the complex plane*, Soviet Math. Dokl.

**4**(1962), no. 1, 1-5.

*Analyse harmonique sur la paires de Guelfand et les espaces hyperboliques*, Analyse Harmonique (P. Eymard, ed.), Le Cours du C.I.M.P.A., Nancy, 1980.

*Sur la convergence des sèries de Fourier*, Comptes Rendous

**178**(1924), 303-306.

*Pointwise ergodic theorems for radial averages on simple Lie groups*. I, Duke J. Math. (to appear). —,

*Pointwise ergodic theorems for radial averages on simple Lie groups*. II, preprint.

*A proof of a theorem of averages*, Proc. London Math. Soc.

**31**(1930), 289-300. K. Petersen,

*Ergodic theory*, Cambridge Univ. Press, London and New York, 1983.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**7**(1994), 875-902 - MSC: Primary 22D40; Secondary 28D15, 43A80
- DOI: https://doi.org/10.1090/S0894-0347-1994-1266737-5
- MathSciNet review: 1266737