Vector bundles and $\textrm {SO}(3)$-invariants for elliptic surfaces
Author:
Robert Friedman
Journal:
J. Amer. Math. Soc. 8 (1995), 29-139
MSC:
Primary 14J27; Secondary 14D20, 14J60, 57R55
DOI:
https://doi.org/10.1090/S0894-0347-1995-1273414-4
MathSciNet review:
1273414
Full-text PDF Free Access
References | Similar Articles | Additional Information
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 131423, DOI https://doi.org/10.1112/plms/s3-7.1.414
- Stefan Bauer, Some nonreduced moduli of bundles and Donaldson invariants for Dolgachev surfaces, J. Reine Angew. Math. 424 (1992), 149–180. MR 1144164, DOI https://doi.org/10.1515/crll.1992.424.149
- Stefan Bauer, Diffeomorphism types of elliptic surfaces with $p_g=1$, J. Reine Angew. Math. 451 (1994), 89–148. MR 1277296, DOI https://doi.org/10.1515/crll.1994.451.89 I. Dolgachev, Algebraic surfaces with $q = {p_g} = 0$, Algebraic Surfaces, C.I.M.E. Cortona 1977, Liguori, Napoli, 1981, pp. 97-215.
- S. K. Donaldson, Irrationality and the $h$-cobordism conjecture, J. Differential Geom. 26 (1987), no. 1, 141–168. MR 892034
- S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1990. Oxford Science Publications. MR 1079726
- Ronald Fintushel and Ronald J. Stern, ${\rm SO}(3)$-connections and the topology of $4$-manifolds, J. Differential Geom. 20 (1984), no. 2, 523–539. MR 788294
- Robert Friedman, Rank two vector bundles over regular elliptic surfaces, Invent. Math. 96 (1989), no. 2, 283–332. MR 989699, DOI https://doi.org/10.1007/BF01393965 ---, Stable vector bundles on algebraic varieties, in preparation.
- Robert Friedman and John W. Morgan, On the diffeomorphism types of certain algebraic surfaces. I, J. Differential Geom. 27 (1988), no. 2, 297–369. MR 925124
- Robert Friedman and John W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27, Springer-Verlag, Berlin, 1994. MR 1288304
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
- Yukio Kametani and Yoshihisa Sato, $0$-dimensional moduli space of stable rank $2$ bundles and differentiable structures on regular elliptic surfaces, Tokyo J. Math. 17 (1994), no. 1, 253–267. MR 1279587, DOI https://doi.org/10.3836/tjm/1270128205
- Dieter Kotschick, On manifolds homeomorphic to ${\bf C}{\rm P}^2\# 8\overline {{\bf C}{\rm P}}{}^2$, Invent. Math. 95 (1989), no. 3, 591–600. MR 979367, DOI https://doi.org/10.1007/BF01393892 ---, $SO(3)$-invariants for $4$-manifolds with $b_2^ + = 1$, Proc. London Math. Soc. 63 (1991), 426-448.
- D. Kotschick and J. W. Morgan, ${\rm SO}(3)$-invariants for $4$-manifolds with $b^+_2=1$. II, J. Differential Geom. 39 (1994), no. 2, 433–456. MR 1267898
- P. B. Kronheimer and T. S. Mrowka, Recurrence relations and asymptotics for four-manifold invariants, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 2, 215–221. MR 1246469, DOI https://doi.org/10.1090/S0273-0979-1994-00492-6
- Jun Li, Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differential Geom. 37 (1993), no. 2, 417–466. MR 1205451
- John W. Morgan, Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues, Topology 32 (1993), no. 3, 449–488. MR 1231956, DOI https://doi.org/10.1016/0040-9383%2893%2990001-C
- John W. Morgan and Tomasz S. Mrowka, On the diffeomorphism classification of regular elliptic surfaces, Internat. Math. Res. Notices 6 (1993), 183–184. MR 1224116, DOI https://doi.org/10.1155/S1073792893000194
- John W. Morgan and Kieran G. O’Grady, Differential topology of complex surfaces, Lecture Notes in Mathematics, vol. 1545, Springer-Verlag, Berlin, 1993. Elliptic surfaces with $p_g=1$: smooth classification; With the collaboration of Millie Niss. MR 1312610 T. Mrowka, A local Mayer-Vietoris principle for Yang-Mills moduli spaces, Ph.D. thesis, Berkeley.
- Kieran G. O’Grady, Algebro-geometric analogues of Donaldson’s polynomials, Invent. Math. 107 (1992), no. 2, 351–395. MR 1144428, DOI https://doi.org/10.1007/BF01231894
- Zhenbo Qin, Equivalence classes of polarizations and moduli spaces of sheaves, J. Differential Geom. 37 (1993), no. 2, 397–415. MR 1205450
- Jean-Pierre Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin-New York, 1973. Cours au Collège de France, Paris, 1962–1963; Avec des textes inédits de J. Tate et de Jean-Louis Verdier; Quatrième édition. MR 0404227
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 91 (French). MR 163911
Retrieve articles in Journal of the American Mathematical Society with MSC: 14J27, 14D20, 14J60, 57R55
Retrieve articles in all journals with MSC: 14J27, 14D20, 14J60, 57R55
Additional Information
Article copyright:
© Copyright 1995
American Mathematical Society