Schubert polynomials for the classical groups
Authors:
Sara Billey and Mark Haiman
Journal:
J. Amer. Math. Soc. 8 (1995), 443-482
MSC:
Primary 05E15; Secondary 14M15
DOI:
https://doi.org/10.1090/S0894-0347-1995-1290232-1
MathSciNet review:
1290232
Full-text PDF Free Access
References | Similar Articles | Additional Information
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Sara C. Billey, William Jockusch, and Richard P. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), no. 4, 345–374. MR 1241505, DOI https://doi.org/10.1023/A%3A1022419800503
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697
- Paul Edelman and Curtis Greene, Balanced tableaux, Adv. in Math. 63 (1987), no. 1, 42–99. MR 871081, DOI https://doi.org/10.1016/0001-8708%2887%2990063-6 S. Fomin and A. N. Kirillov, Combinatorial ${B_n}$ analogues of Schubert polynomials, Manuscript, M.I.T., 1993.
- Sergey Fomin and Richard P. Stanley, Schubert polynomials and the nil-Coxeter algebra, Adv. Math. 103 (1994), no. 2, 196–207. MR 1265793, DOI https://doi.org/10.1006/aima.1994.1009 I. Gessel and G. Viennot, Determinants and plane partitions, preprint, 1983.
- Mark D. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992), no. 1-3, 79–113. MR 1158783, DOI https://doi.org/10.1016/0012-365X%2892%2990368-P
- Steven L. Kleiman, Problem 15: rigorous foundation of Schubert’s enumerative calculus, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R. I., 1976, pp. 445–482. Proc. Sympos. Pure Math., Vol. XXVIII. MR 0429938
- S. L. Kleiman and Dan Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061–1082. MR 323796, DOI https://doi.org/10.2307/2317421
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- I. G. Macdonald, Schubert polynomials, Surveys in combinatorics, 1991 (Guildford, 1991) London Math. Soc. Lecture Note Ser., vol. 166, Cambridge Univ. Press, Cambridge, 1991, pp. 73–99. MR 1161461
- I. G. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR 553598
- Piotr Pragacz, Algebro-geometric applications of Schur $S$- and $Q$-polynomials, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR 1180989, DOI https://doi.org/10.1007/BFb0083503
- Bruce E. Sagan, Shifted tableaux, Schur $Q$-functions, and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), no. 1, 62–103. MR 883894, DOI https://doi.org/10.1016/0097-3165%2887%2990047-1
- Richard P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), no. 4, 359–372. MR 782057, DOI https://doi.org/10.1016/S0195-6698%2884%2980039-6
- Richard P. Stanley, Some combinatorial aspects of the Schubert calculus, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976) Springer, Berlin, 1977, pp. 217–251. Lecture Notes in Math., Vol. 579. MR 0465880
- Michelle L. Wachs, Flagged Schur functions, Schubert polynomials, and symmetrizing operators, J. Combin. Theory Ser. A 40 (1985), no. 2, 276–289. MR 814415, DOI https://doi.org/10.1016/0097-3165%2885%2990091-3 D. R. Worley, A theory of shifted Young tableaux, Ph.D. Thesis, M.I.T., 1984.
Retrieve articles in Journal of the American Mathematical Society with MSC: 05E15, 14M15
Retrieve articles in all journals with MSC: 05E15, 14M15
Additional Information
Keywords:
Schubert polynomials,
flag varieties,
cohomology
Article copyright:
© Copyright 1995
American Mathematical Society