Flat vector bundles, direct images and higher real analytic torsion
HTML articles powered by AMS MathViewer
- by Jean-Michel Bismut and John Lott
- J. Amer. Math. Soc. 8 (1995), 291-363
- DOI: https://doi.org/10.1090/S0894-0347-1995-1303026-5
- PDF | Request permission
Abstract:
We prove a Riemann-Roch-Grothendieck-type theorem concerning the direct image of a flat vector bundle under a submersion of smooth manifolds. We refine this theorem to the level of differential forms. We construct associated secondary invariants, the analytic torsion forms, which coincide in degree 0 with the Ray-Singer real analytic torsion. Résumé. On démontre un analogue du théorème de Riemann-Roch-Grothendieck pour l’image directe d’un fibré plat par une submersion. On raffine ce théorème au niveau des formes différentielles. On construit des invariants secondaires, les formes de torsion analytique, qui coïncident, en degré 0, avec la torsion de Ray-Singer.References
- Jean-Michel Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1986), no. 1, 91–151. MR 813584, DOI 10.1007/BF01388755
- Jean-Michel Bismut and Jeff Cheeger, $\eta$-invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989), no. 1, 33–70. MR 966608, DOI 10.1090/S0894-0347-1989-0966608-3
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Alain Berthomieu and Jean-Michel Bismut, Quillen metrics and higher analytic torsion forms, J. Reine Angew. Math. 457 (1994), 85–184. MR 1305280, DOI 10.1515/crll.1994.457.85
- J. C. Becker and D. H. Gottlieb, Transfer maps for fibrations and duality, Compositio Math. 33 (1976), no. 2, 107–133. MR 436137
- J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), no. 1, 49–78. MR 929146
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720, DOI 10.1007/978-3-642-58088-8
- Jean-Michel Bismut and Kai Köhler, Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom. 1 (1992), no. 4, 647–684. MR 1174905
- Jean-Michel Bismut and Gilles Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math. 74 (1991), ii+298 pp. (1992). MR 1188532
- Jean-Michel Bismut and John Lott, Fibrés plats, images directes et formes de torsion analytique, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 5, 477–482 (French, with English and French summaries). MR 1209270
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496
- Raoul Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71–112. MR 185607, DOI 10.1007/BF02391818 J. M. Bismut and W. Zhang, An extension of the Cheeger-Müller theorem, Astérisque, no. 205, Soc. Math. France, Paris, 1992.
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322. MR 528965, DOI 10.2307/1971113
- Jeff Cheeger and James Simons, Differential characters and geometric invariants, Geometry and topology (College Park, Md., 1983/84) Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 50–80. MR 827262, DOI 10.1007/BFb0075216
- Johan L. Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology 15 (1976), no. 3, 233–245. MR 413122, DOI 10.1016/0040-9383(76)90038-0 X. Dai and R. Melrose (to appear). R. Forman (to appear). W. Franz, Uber die Torsion einer überdeckrung, J. Reine Angew. Math. 173 (1935), 245-254.
- Kiyoshi Igusa, Parametrized Morse theory and its applications, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 643–651. MR 1159251
- John R. Klein, Higher Franz-Reidemeister torsion: low-dimensional applications, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) Contemp. Math., vol. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 195–204. MR 1234265, DOI 10.1090/conm/150/01291
- Franz W. Kamber and Philippe Tondeur, Characteristic invariants of foliated bundles, Manuscripta Math. 11 (1974), 51–89. MR 334237, DOI 10.1007/BF01189091 L. Lewin et al., Structural properties of polylogarithms, Amer. Math. Soc., Providence, RI, 1991.
- Jean-Louis Loday, Les matrices monomiales et le groupe de Whitehead $\textrm {Wh}_{2}$, Algebraic $K$-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) Lecture Notes in Math., Vol. 551, Springer, Berlin, 1976, pp. 155–163 (French). MR 0494129
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322. MR 528965, DOI 10.2307/1971113
- Werner Müller, Analytic torsion and $R$-torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993), no. 3, 721–753. MR 1189689, DOI 10.1090/S0894-0347-1993-1189689-4
- Daniel Quillen, Superconnections and the Chern character, Topology 24 (1985), no. 1, 89–95. MR 790678, DOI 10.1016/0040-9383(85)90047-3 —, Determinants of Cauchy-Riemann operators over a Riemann surface, Functional Anal. Appl. 14 (1985), 31-34.
- Daniel Quillen, Higher algebraic $K$-theory, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 171–176. MR 0422392
- D. B. Ray and I. M. Singer, $R$-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145–210. MR 295381, DOI 10.1016/0001-8708(71)90045-4
- D. B. Ray and I. M. Singer, Analytic torsion for complex manifolds, Ann. of Math. (2) 98 (1973), 154–177. MR 383463, DOI 10.2307/1970909 K. Reidemeister, Homotopieringe und Linsenraüm, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102-109.
- R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR 0237943
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
- J. B. Wagoner, Diffeomorphisms, $K_{2}$, and analytic torsion, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 23–33. MR 520491
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc. 8 (1995), 291-363
- MSC: Primary 58G26; Secondary 58G11
- DOI: https://doi.org/10.1090/S0894-0347-1995-1303026-5
- MathSciNet review: 1303026