Cyclic homology and nonsingularity
Authors:
Joachim Cuntz and Daniel Quillen
Journal:
J. Amer. Math. Soc. 8 (1995), 373-442
MSC:
Primary 19D55; Secondary 16E40, 18G60
DOI:
https://doi.org/10.1090/S0894-0347-1995-1303030-7
MathSciNet review:
1303030
Full-text PDF
References | Similar Articles | Additional Information
- [Co1] A. Connes, Non-commutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257-360.
- [Co2] A. Connes, Entire cyclic cohomology of Banach algebras and characters of 𝜃-summable Fredholm modules, 𝐾-Theory 1 (1988), no. 6, 519–548. MR 953915, https://doi.org/10.1007/BF00533785
- [CC] A. Connes and J. Cuntz, Quasi homomorphismes, cohomologie cyclique et positivité, Comm. Math. Phys. 114 (1988), no. 3, 515–526 (French, with English summary). MR 929142
- [Cu1] Joachim Cuntz, Universal extensions and cyclic cohomology, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 1, 5–8 (English, with French summary). MR 1004928
- [Cu2] Joachim Cuntz, Cyclic cohomology and 𝐾-homology, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 969–978. MR 1159282
- [CQ1] Joachim Cuntz and Daniel Quillen, Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 (1995), no. 2, 251–289. MR 1303029, https://doi.org/10.1090/S0894-0347-1995-1303029-0
- [CQ2] Joachim Cuntz and Daniel Quillen, Operators on noncommutative differential forms and cyclic homology, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 77–111. MR 1358613
- [D] P. Deligne, Harvard lectures, fall 1969.
- [F] B. V. Fedosov, Analytic formulae for the index of elliptic operators, Trudy Moskov. Mat. Obšč. 30 (1974), 159–241 (Russian). MR 0420731
- [G] Thomas G. Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), no. 2, 187–215. MR 793184, https://doi.org/10.1016/0040-9383(85)90055-2
- [H] Robin Hartshorne, On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 5–99. MR 0432647
- [HKR] G. Hochschild, Bertram Kostant, and Alex Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383–408. MR 0142598, https://doi.org/10.1090/S0002-9947-1962-0142598-8
- [JK] John D. S. Jones and Christian Kassel, Bivariant cyclic theory, 𝐾-Theory 3 (1989), no. 4, 339–365. MR 1047192, https://doi.org/10.1007/BF00584525
- [Ka] Max Karoubi, Homologie cyclique et 𝐾-théorie, Astérisque 149 (1987), 147 (French, with English summary). MR 913964
- [K1] Christian Kassel, Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), no. 1, 195–216. MR 883882, https://doi.org/10.1016/0021-8693(87)90086-X
- [K2] Christian Kassel, Caractère de Chern bivariant, 𝐾-Theory 3 (1989), no. 4, 367–400 (French, with English summary). MR 1047193, https://doi.org/10.1007/BF00584526
- [K3] Christian Kassel, Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math. 408 (1990), 159–180 (French). MR 1058987, https://doi.org/10.1515/crll.1990.408.159
- [L] Jean-Louis Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970
- [LQ] Jean-Louis Loday and Daniel Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), no. 4, 569–591. MR 780077, https://doi.org/10.1007/BF02566367
- [N] Victor Nistor, A bivariant Chern character for 𝑝-summable quasihomomorphisms, 𝐾-Theory 5 (1991), no. 3, 193–211. MR 1162440, https://doi.org/10.1007/BF00533587
- [Q1] Daniel Quillen, Algebra cochains and cyclic cohomology, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 139–174 (1989). MR 1001452
- [Q2] Daniel Quillen, Cyclic cohomology and algebra extensions, 𝐾-Theory 3 (1989), no. 3, 205–246. MR 1040400, https://doi.org/10.1007/BF00533370
- [Q3] Daniel Quillen, Bivariant cyclic cohomology and models for cyclic homology types, J. Pure Appl. Algebra 101 (1995), no. 1, 1–33. MR 1346426, https://doi.org/10.1016/0022-4049(95)00002-E
Retrieve articles in Journal of the American Mathematical Society with MSC: 19D55, 16E40, 18G60
Retrieve articles in all journals with MSC: 19D55, 16E40, 18G60
Additional Information
DOI:
https://doi.org/10.1090/S0894-0347-1995-1303030-7
Article copyright:
© Copyright 1995
American Mathematical Society


