Quasi-factors of zero-entropy systems
HTML articles powered by AMS MathViewer
- by Eli Glasner and Benjamin Weiss
- J. Amer. Math. Soc. 8 (1995), 665-686
- DOI: https://doi.org/10.1090/S0894-0347-1995-1270579-5
- PDF | Request permission
Abstract:
For minimal systems $(X,T)$ of zero topological entropy we demonstrate the sharp difference between the behavior, regarding entropy, of the systems $(M(X),T)$ and $({2^X},T)$ induced by $T$ on the spaces $M(X)$ of probability measures on $X$ and ${2^X}$ of closed subsets of $X$. It is shown that the system $(M(X),T)$ has itself zero topological entropy. Two proofs of this theorem are given. The first uses ergodic theoretic ideas. The second relies on the different behavior of the Banach spaces $l_1^n$ and $l_\infty ^n$ with respect to the existence of almost Hilbertian central sections of the unit ball. In contrast to this theorem we construct a minimal system $(X,T)$ of zero entropy with a minimal subsystem $(Y,T)$ of $({2^X},T)$ whose entropy is positive.References
- Walter Bauer and Karl Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math. 79 (1975), 81–92. MR 370540, DOI 10.1007/BF01585664
- F. Blanchard, Fully positive topological entropy and topological mixing, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 95–105. MR 1185082, DOI 10.1090/conm/135/1185082
- François Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France 121 (1993), no. 4, 465–478 (English, with English and French summaries). MR 1254749, DOI 10.24033/bsmf.2216
- F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (1993), no. 3, 985–992. MR 1155593, DOI 10.1090/S0002-9939-1993-1155593-2 F. Blanchard, B. Host, A. Maass, and D. J. Rudolph, Entropy pairs for a measure, preprint.
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675, DOI 10.1007/BFb0082364
- Nathaniel F. G. Martin and James W. England, Mathematical theory of entropy, Encyclopedia of Mathematics and its Applications, vol. 12, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by James K. Brooks. MR 612318
- T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94. MR 445274, DOI 10.1007/BF02392234
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625, DOI 10.1515/9781400855162
- S. Glasner, Quasifactors in ergodic theory, Israel J. Math. 45 (1983), no. 2-3, 198–208. MR 719119, DOI 10.1007/BF02774016
- S. Glasner and B. Weiss, Interpolation sets for subalgebras of $l^{\infty }(\textbf {Z})$, Israel J. Math. 44 (1983), no. 4, 345–360. MR 710239, DOI 10.1007/BF02761993
- Eli Glasner and Benjamin Weiss, Strictly ergodic, uniform positive entropy models, Bull. Soc. Math. France 122 (1994), no. 3, 399–412 (English, with English and French summaries). MR 1294463, DOI 10.24033/bsmf.2239
- Eli Glasner and Benjamin Weiss, Dynamics and entropy of the space of measures, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 3, 239–243 (English, with English and French summaries). MR 1233419
- Eli Glasner and Benjamin Weiss, Topological entropy of extensions, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993) London Math. Soc. Lecture Note Ser., vol. 205, Cambridge Univ. Press, Cambridge, 1995, pp. 299–307. MR 1325706, DOI 10.1017/CBO9780511574818.011
- M. G. Karpovsky and V. D. Milman, Coordinate density of sets of vectors, Discrete Math. 24 (1978), no. 2, 177–184. MR 522926, DOI 10.1016/0012-365X(78)90197-8
- A. W. Knapp, Functions behaving like almost automorphic functions, Topological Dynamics (Symposium, Colorado State Univ., Ft. Collins, Colo., 1967) Benjamin, New York, 1968, pp. 299–317. MR 0238294
- William Parry, Topics in ergodic theory, Cambridge Tracts in Mathematics, vol. 75, Cambridge University Press, Cambridge, 2004. Reprint of the 1981 original. MR 2140546
- N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145–147. MR 307902, DOI 10.1016/0097-3165(72)90019-2
- Saharon Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247–261. MR 307903, DOI 10.2140/pjm.1972.41.247
- Jean-Paul Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schéma de Bernoulli, Israel J. Math. 21 (1975), no. 2-3, 177–207 (French, with English summary). MR 399419, DOI 10.1007/BF02760797
- Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770
- Robert J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), no. 4, 555–588. MR 414832
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc. 8 (1995), 665-686
- MSC: Primary 54H20; Secondary 28D20
- DOI: https://doi.org/10.1090/S0894-0347-1995-1270579-5
- MathSciNet review: 1270579