On the existence of Maass cusp forms on hyperbolic surfaces with cone points
HTML articles powered by AMS MathViewer
- by Christopher M. Judge
- J. Amer. Math. Soc. 8 (1995), 715-759
- DOI: https://doi.org/10.1090/S0894-0347-1995-1273415-6
- PDF | Request permission
Abstract:
The perturbation theory of the Laplace spectrum of hyperbolic surfaces with conical singularities belonging to a fixed conformal class is developed. As an application, it is shown that the generic such surface with cusps has no Maass cusp forms (${L^2}$ eigenfunctions) under specific eigenvalue multiplicity assumptions. It is also shown that eigenvalues depend monotonically on the cone angles. From this, one obtains Neumann eigenvalue monotonicity for geodesic triangles in ${{\mathbf {H}}^2}$ and a lower bound of $\frac {1}{2}{\pi ^2}$ for the eigenvalues of ‘odd’ Maass cusp forms associated to Hecke triangle groups.References
- Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR 0488101 L. Bers, F. John, and M. Shechter, Partial differential equations, Amer. Math. Soc., Providence, RI, 1964.
- Yves Colin de Verdière, Pseudo-laplaciens. II, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 87–113 (French). MR 699488
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Partial differential equations; Reprint of the 1962 original; A Wiley-Interscience Publication. MR 1013360
- J.-M. Deshouillers, H. Iwaniec, R. S. Phillips, and P. Sarnak, Maass cusp forms, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), no. 11, 3533–3534. MR 791741, DOI 10.1073/pnas.82.11.3533
- Isaac Efrat, On the discrete spectrum of certain discrete groups, Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 1, 125–129. MR 1053987, DOI 10.1090/S0273-0979-1991-15966-5 A. Erdelyi (ed.), Higher transcendental functions: The Bateman manuscript project, Vol. 1, McGraw-Hill, New York, 1953.
- Stephen S. Gelbart, Automorphic forms on adèle groups, Annals of Mathematics Studies, No. 83, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR 0379375
- I. M. Gel′fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, Generalized Functions, vol. 6, Academic Press, Inc., Boston, MA, 1990. Translated from the Russian by K. A. Hirsch; Reprint of the 1969 edition. MR 1071179
- L. Greenberg and I. Babuška, A continuous analogue of Sturm sequences in the context of Sturm-Liouville equations, SIAM J. Numer. Anal. 26 (1989), no. 4, 920–945. MR 1005517, DOI 10.1137/0726051
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,R)$. Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR 0439755
- Dennis A. Hejhal, Eigenvalues of the Laplacian for Hecke triangle groups, Mem. Amer. Math. Soc. 97 (1992), no. 469, vi+165. MR 1106989, DOI 10.1090/memo/0469
- Lizhen Ji, Degeneration of pseudo-Laplace operators for hyperbolic Riemann surfaces, Proc. Amer. Math. Soc. 121 (1994), no. 1, 283–293. MR 1184082, DOI 10.1090/S0002-9939-1994-1184082-5 C. Judge, The variation of constant curvature surfaces with conical singularities, Preprint, 1993.
- Lizhen Ji and Steven Zelditch, Hyperbolic cusp forms and spectral simplicity on compact hyperbolic surfaces, Geometry of the spectrum (Seattle, WA, 1993) Contemp. Math., vol. 173, Amer. Math. Soc., Providence, RI, 1994, pp. 167–179. MR 1298204, DOI 10.1090/conm/173/01824 T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1980.
- Serge Lang, $\textrm {SL}_2(\textbf {R})$, Graduate Texts in Mathematics, vol. 105, Springer-Verlag, New York, 1985. Reprint of the 1975 edition. MR 803508
- N. N. Lebedev, Special functions and their applications, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR 0350075
- Peter D. Lax and Ralph S. Phillips, Scattering theory for automorphic functions, Annals of Mathematics Studies, No. 87, Princeton University Press, Princeton, N.J., 1976. MR 0562288
- Wen Zhi Luo, On the nonvanishing of Rankin-Selberg $L$-functions, Duke Math. J. 69 (1993), no. 2, 411–425. MR 1203232, DOI 10.1215/S0012-7094-93-06918-9
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697 I. M. Petridis, Scattering theory for automorphic functions and its relation to $L$-functions, Thesis, Stanford, 1992.
- R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of $\textrm {PSL}(2,\textbf {R})$, Invent. Math. 80 (1985), no. 2, 339–364. MR 788414, DOI 10.1007/BF01388610 —, On Weyl’s Law for noncompact finite volume surfaces, Comm. Pure. Appl. Math. 38 (1985). —, Cusp forms for character varieties, Preprint, 1992. —, Automorphic spectrum and Fermi’s golden rule, Preprint, 1992.
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990. Translated from the second French edition by Leo F. Boron; Reprint of the 1955 original. MR 1068530 P. Sarnak, Prime geodesic theorems, Thesis, Stanford, 1980.
- Peter Sarnak, On cusp forms, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 393–407. MR 853570, DOI 10.1090/conm/053/853570 A. Selberg, Göttingen lectures, 1954.
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York, 1985. MR 791406, DOI 10.1007/978-1-4612-5128-6
- K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059–1078. MR 464332, DOI 10.2307/2374041
- Andrew M. Winkler, Cusp forms and Hecke groups, J. Reine Angew. Math. 386 (1988), 187–204. MR 936998, DOI 10.1515/crll.1988.386.187
- Scott A. Wolpert, Spectral limits for hyperbolic surfaces. I, II, Invent. Math. 108 (1992), no. 1, 67–89, 91–129. MR 1156387, DOI 10.1007/BF02100600 —, Disappearance of cusp forms in special families, Ann. of Math. (to appear). A. B. Venkov, The spectral theory of automorphic functions, Klüwer, Dordrecht, 1990.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc. 8 (1995), 715-759
- MSC: Primary 11F72; Secondary 58G25
- DOI: https://doi.org/10.1090/S0894-0347-1995-1273415-6
- MathSciNet review: 1273415