## On the existence of Maass cusp forms on hyperbolic surfaces with cone points

HTML articles powered by AMS MathViewer

- by Christopher M. Judge PDF
- J. Amer. Math. Soc.
**8**(1995), 715-759 Request permission

## Abstract:

The perturbation theory of the Laplace spectrum of hyperbolic surfaces with conical singularities belonging to a fixed conformal class is developed. As an application, it is shown that the generic such surface with cusps has no Maass cusp forms (${L^2}$ eigenfunctions) under specific eigenvalue multiplicity assumptions. It is also shown that eigenvalues depend monotonically on the cone angles. From this, one obtains Neumann eigenvalue monotonicity for geodesic triangles in ${{\mathbf {H}}^2}$ and a lower bound of $\frac {1}{2}{\pi ^2}$ for the eigenvalues of ‘odd’ Maass cusp forms associated to Hecke triangle groups.## References

- Melvin S. Berger,
*Nonlinearity and functional analysis*, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR**0488101**
L. Bers, F. John, and M. Shechter, - Yves Colin de Verdière,
*Pseudo-laplaciens. II*, Ann. Inst. Fourier (Grenoble)**33**(1983), no. 2, 87–113 (French). MR**699488** - R. Courant and D. Hilbert,
*Methods of mathematical physics. Vol. II*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Partial differential equations; Reprint of the 1962 original; A Wiley-Interscience Publication. MR**1013360** - J.-M. Deshouillers, H. Iwaniec, R. S. Phillips, and P. Sarnak,
*Maass cusp forms*, Proc. Nat. Acad. Sci. U.S.A.**82**(1985), no. 11, 3533–3534. MR**791741**, DOI 10.1073/pnas.82.11.3533 - Isaac Efrat,
*On the discrete spectrum of certain discrete groups*, Bull. Amer. Math. Soc. (N.S.)**24**(1991), no. 1, 125–129. MR**1053987**, DOI 10.1090/S0273-0979-1991-15966-5
A. Erdelyi (ed.), - Stephen S. Gelbart,
*Automorphic forms on adèle groups*, Annals of Mathematics Studies, No. 83, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR**0379375** - I. M. Gel′fand, M. I. Graev, and I. I. Pyatetskii-Shapiro,
*Representation theory and automorphic functions*, Generalized Functions, vol. 6, Academic Press, Inc., Boston, MA, 1990. Translated from the Russian by K. A. Hirsch; Reprint of the 1969 edition. MR**1071179** - L. Greenberg and I. Babuška,
*A continuous analogue of Sturm sequences in the context of Sturm-Liouville equations*, SIAM J. Numer. Anal.**26**(1989), no. 4, 920–945. MR**1005517**, DOI 10.1137/0726051 - Dennis A. Hejhal,
*The Selberg trace formula for $\textrm {PSL}(2,R)$. Vol. I*, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR**0439755** - Dennis A. Hejhal,
*Eigenvalues of the Laplacian for Hecke triangle groups*, Mem. Amer. Math. Soc.**97**(1992), no. 469, vi+165. MR**1106989**, DOI 10.1090/memo/0469 - Lizhen Ji,
*Degeneration of pseudo-Laplace operators for hyperbolic Riemann surfaces*, Proc. Amer. Math. Soc.**121**(1994), no. 1, 283–293. MR**1184082**, DOI 10.1090/S0002-9939-1994-1184082-5
C. Judge, - Lizhen Ji and Steven Zelditch,
*Hyperbolic cusp forms and spectral simplicity on compact hyperbolic surfaces*, Geometry of the spectrum (Seattle, WA, 1993) Contemp. Math., vol. 173, Amer. Math. Soc., Providence, RI, 1994, pp. 167–179. MR**1298204**, DOI 10.1090/conm/173/01824
T. Kato, - Serge Lang,
*$\textrm {SL}_2(\textbf {R})$*, Graduate Texts in Mathematics, vol. 105, Springer-Verlag, New York, 1985. Reprint of the 1975 edition. MR**803508** - N. N. Lebedev,
*Special functions and their applications*, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR**0350075** - Peter D. Lax and Ralph S. Phillips,
*Scattering theory for automorphic functions*, Annals of Mathematics Studies, No. 87, Princeton University Press, Princeton, N.J., 1976. MR**0562288** - Wen Zhi Luo,
*On the nonvanishing of Rankin-Selberg $L$-functions*, Duke Math. J.**69**(1993), no. 2, 411–425. MR**1203232**, DOI 10.1215/S0012-7094-93-06918-9 - F. W. J. Olver,
*Asymptotics and special functions*, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR**0435697**
I. M. Petridis, - R. S. Phillips and P. Sarnak,
*On cusp forms for co-finite subgroups of $\textrm {PSL}(2,\textbf {R})$*, Invent. Math.**80**(1985), no. 2, 339–364. MR**788414**, DOI 10.1007/BF01388610
—, - Frigyes Riesz and Béla Sz.-Nagy,
*Functional analysis*, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990. Translated from the second French edition by Leo F. Boron; Reprint of the 1955 original. MR**1068530**
P. Sarnak, - Peter Sarnak,
*On cusp forms*, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 393–407. MR**853570**, DOI 10.1090/conm/053/853570
A. Selberg, Göttingen lectures, 1954.
- A. Selberg,
*Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series*, J. Indian Math. Soc. (N.S.)**20**(1956), 47–87. MR**88511** - Audrey Terras,
*Harmonic analysis on symmetric spaces and applications. I*, Springer-Verlag, New York, 1985. MR**791406**, DOI 10.1007/978-1-4612-5128-6 - K. Uhlenbeck,
*Generic properties of eigenfunctions*, Amer. J. Math.**98**(1976), no. 4, 1059–1078. MR**464332**, DOI 10.2307/2374041 - Andrew M. Winkler,
*Cusp forms and Hecke groups*, J. Reine Angew. Math.**386**(1988), 187–204. MR**936998**, DOI 10.1515/crll.1988.386.187 - Scott A. Wolpert,
*Spectral limits for hyperbolic surfaces. I, II*, Invent. Math.**108**(1992), no. 1, 67–89, 91–129. MR**1156387**, DOI 10.1007/BF02100600
—,

*Partial differential equations*, Amer. Math. Soc., Providence, RI, 1964.

*Higher transcendental functions: The Bateman manuscript project*, Vol. 1, McGraw-Hill, New York, 1953.

*The variation of constant curvature surfaces with conical singularities*, Preprint, 1993.

*Perturbation theory for linear operators*, Springer-Verlag, Berlin, 1980.

*Scattering theory for automorphic functions and its relation to*$L$

*-functions*, Thesis, Stanford, 1992.

*On Weyl’s Law for noncompact finite volume surfaces*, Comm. Pure. Appl. Math.

**38**(1985). —,

*Cusp forms for character varieties*, Preprint, 1992. —,

*Automorphic spectrum and Fermi’s golden rule*, Preprint, 1992.

*Prime geodesic theorems*, Thesis, Stanford, 1980.

*Disappearance of cusp forms in special families*, Ann. of Math. (to appear). A. B. Venkov,

*The spectral theory of automorphic functions*, Klüwer, Dordrecht, 1990.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**8**(1995), 715-759 - MSC: Primary 11F72; Secondary 58G25
- DOI: https://doi.org/10.1090/S0894-0347-1995-1273415-6
- MathSciNet review: 1273415