Threshold functions for Ramsey properties
HTML articles powered by AMS MathViewer
- by Vojtěch Rödl and Andrzej Ruciński
- J. Amer. Math. Soc. 8 (1995), 917-942
- DOI: https://doi.org/10.1090/S0894-0347-1995-1276825-6
- PDF | Request permission
Abstract:
Probabilistic methods have been used to approach many problems of Ramsey theory. In this paper we study Ramsey type questions from the point of view of random structures. Let $K(n,N)$ be the random graph chosen uniformly from among all graphs with $n$ vertices and $N$ edges. For a fixed graph $G$ and an integer $r$ we address the question what is the minimum $N = N(G,r,n)$ such that the random graph $K(n,N)$ contains, almost surely, a monochromatic copy of $G$ in every $r$-coloring of its edges ( $K(n,N) \to {(G)_r}$, in short). We find a graph parameter $\gamma = \gamma (G)$ yielding \[ \lim \limits _{n \to \infty } \operatorname{Prob}(K(n,N) \to {(G)_r}) = \left \{ {\begin {array}{*{20}{c}} {0\quad {\text {if }}\;N < c{n^y},} \\ {1\quad {\text {if}}\;N > C{n^y},} \\ \end {array} } \right .\quad \] for some $c$, $C > 0$. We use this to derive a number of consequences that deal with the existence of sparse Ramsey graphs. For example we show that for all $r \geq 2$ and $k \geq 3$ there exists $C > 0$ such that almost all graphs $H$ with $n$ vertices and $C{n^{\frac {{2k}}{{k + 1}}}}$ edges which are ${K_{k + 1}}$-free, satisfy $H \to {({K_k})_r}$. We also apply our method to the problem of finding the smallest $N = N(k,r,n)$ guaranteeing that almost all sequences $1 \leq {a_1} < {a_2} < \cdots < {a_N} \leq n$ contain an arithmetic progression of length $k$ in every $r$-coloring, and show that $N = \Theta ({n^{\frac {{k - 2}}{{k - 1}}}})$ is the threshold.References
- Béla Bollobás, Threshold functions for small subgraphs, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 197–206. MR 620729, DOI 10.1017/S0305004100058655
- Béla Bollobás, Random graphs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 809996
- B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), no. 1, 35–38. MR 905149, DOI 10.1007/BF02579198 P.Erdős and A.Hajnal, Research problem 2-5, J. Combin. Theory 2 (1967), 104. P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960), 17-61.
- Jon Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970), 19–24. MR 268080, DOI 10.1137/0118004
- P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without $K_4$, Graphs Combin. 2 (1986), no. 2, 135–144. MR 932121, DOI 10.1007/BF01788087
- R. L. Graham, On edgewise $2$-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combinatorial Theory 4 (1968), 300. MR 219443, DOI 10.1016/S0021-9800(68)80009-2
- R. L. Graham, Recent developments in Ramsey theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 1555–1567. MR 804796
- R. L. Graham and J. Nešetřil, Large minimal sets which force long arithmetic progressions, J. Combin. Theory Ser. A 42 (1986), no. 2, 270–276. MR 847557, DOI 10.1016/0097-3165(86)90097-X
- Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, Ramsey theory, 2nd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1990. A Wiley-Interscience Publication. MR 1044995
- Robert W. Irving, On a bound of Graham and Spencer for a graph-coloring constant, J. Combinatorial Theory Ser. B 15 (1973), 200–203. MR 321778, DOI 10.1016/0095-8956(73)90021-x
- Svante Janson, Poisson approximation for large deviations, Random Structures Algorithms 1 (1990), no. 2, 221–229. MR 1138428, DOI 10.1002/rsa.3240010209
- Tomasz Łuczak, Andrzej Ruciński, and Bernd Voigt, Ramsey properties of random graphs, J. Combin. Theory Ser. B 56 (1992), no. 1, 55–68. MR 1182457, DOI 10.1016/0095-8956(92)90006-J
- Jaroslav Ne et il and Vojtěch Rödl, The Ramsey property for graphs with forbidden complete subgraphs, J. Combinatorial Theory Ser. B 20 (1976), no. 3, 243–249. MR 412004, DOI 10.1016/0095-8956(76)90015-0
- Jaroslav Ne et il and Vojtěch Rödl, Van der Waerden theorem for sequences of integers not containing an arithmetic progression of $k$ terms, Comment. Math. Univ. Carolinae 17 (1976), no. 4, 675–681. MR 441906
- Jaroslav Ne et il and Vojtěch Rödl, The partite construction and Ramsey set systems, Discrete Math. 75 (1989), no. 1-3, 327–334. Graph theory and combinatorics (Cambridge, 1988). MR 1001405, DOI 10.1016/0012-365X(89)90097-6
- Jaroslav Ne et il and Vojtěch Rödl, Partite construction and Ramsey space systems, Mathematics of Ramsey theory, Algorithms Combin., vol. 5, Springer, Berlin, 1990, pp. 98–112. MR 1083596, DOI 10.1007/978-3-642-72905-8_{8}
- Vojtěch Rödl, On Ramsey families of sets, Graphs Combin. 6 (1990), no. 2, 187–195. MR 1073689, DOI 10.1007/BF01787730
- Vojtěch Rödl and Andrzej Ruciński, Random graphs with monochromatic triangles in every edge coloring, Random Structures Algorithms 5 (1994), no. 2, 253–270. MR 1262978, DOI 10.1002/rsa.3240050202
- V. Rödl and A. Ruciński, Lower bounds on probability thresholds for Ramsey properties, Combinatorics, Paul Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., János Bolyai Math. Soc., Budapest, 1993, pp. 317–346. MR 1249720
- Andrzej Ruciński, Small subgraphs of random graphs—a survey, Random graphs ’87 (Poznań, 1987) Wiley, Chichester, 1990, pp. 283–303. MR 1094137
- Joel Spencer, Restricted Ramsey configurations, J. Combinatorial Theory Ser. A 19 (1975), no. 3, 278–286. MR 382058, DOI 10.1016/0097-3165(75)90053-9
- E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 369312, DOI 10.4064/aa-27-1-199-245 —, Partitions of graphs, Problems Combin. et Theorie des Graphes, Edition du C.N.R.S. 260 (1978), 399-402, Paris.
- P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959), 358–360. MR 106865, DOI 10.1112/jlms/s1-34.3.358
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc. 8 (1995), 917-942
- MSC: Primary 05C55; Secondary 05C80, 05D10
- DOI: https://doi.org/10.1090/S0894-0347-1995-1276825-6
- MathSciNet review: 1276825