Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors
HTML articles powered by AMS MathViewer
- by Adam Parusiński and Piotr Pragacz
- J. Amer. Math. Soc. 8 (1995), 793-817
- DOI: https://doi.org/10.1090/S0894-0347-1995-1311826-0
- PDF | Request permission
References
- Enrico Arbarello and Maurizio Cornalba, On a conjecture of Petri, Comment. Math. Helv. 56 (1981), no. 1, 1–38 (Italian). MR 615613, DOI 10.1007/BF02566195 A. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves, Vol. I, Springer-Verlag, Berlin, Heidelberg, and New York, 1984. A. Borel et al., Intersection cohomology, Progr. Math., vol. 50, Birkhäuser, Boston, Basel, and Berlin, 1984.
- J.-P. Brasselet and M.-H. Schwartz, Sur les classes de Chern d’un ensemble analytique complexe, The Euler-Poincaré characteristic (French), Astérisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 93–147 (French). MR 629125
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), no. 3-4, 271–283. MR 611386, DOI 10.1007/BF02392466
- Ira Gessel and Gérard Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58 (1985), no. 3, 300–321. MR 815360, DOI 10.1016/0001-8708(85)90121-5
- D. Gieseker, Stable curves and special divisors: Petri’s conjecture, Invent. Math. 66 (1982), no. 2, 251–275. MR 656623, DOI 10.1007/BF01389394
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7 G. González-Sprinberg, L’obstruction locale d’Euler et le théorème de MacPherson, Astérisque 82-83 (1981), 7-32.
- Phillip Griffiths and Joseph Harris, On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980), no. 1, 233–272. MR 563378
- F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. MR 0202713
- J. Harris and L. Tu, Chern numbers of kernel and cokernel bundles, Invent. Math. 75 (1984), no. 3, 467–475. MR 735336, DOI 10.1007/BF01388639 G. Kempf, Schubert methods with an application to algebraic curves, Publications of Mathematisch Centrum, Amsterdam, 1972.
- Steven L. Kleiman and Dan Laksov, Another proof of the existence of special divisors, Acta Math. 132 (1974), 163–176. MR 357398, DOI 10.1007/BF02392112
- Lê Dũng Tráng and Bernard Teissier, Variétés polaires locales et classes de Chern des variétés singulières, Ann. of Math. (2) 114 (1981), no. 3, 457–491 (French). MR 634426, DOI 10.2307/1971299
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 361141, DOI 10.2307/1971080
- Vicente Navarro Aznar, On the Chern classes and the Euler characteristic for nonsingular complete intersections, Proc. Amer. Math. Soc. 78 (1980), no. 1, 143–148. MR 548103, DOI 10.1090/S0002-9939-1980-0548103-2
- Adam Parusiński and Piotr Pragacz, Characteristic numbers of degeneracy loci, Enumerative algebraic geometry (Copenhagen, 1989) Contemp. Math., vol. 123, Amer. Math. Soc., Providence, RI, 1991, pp. 189–197. MR 1143555, DOI 10.1090/conm/123/1143555
- Adam Parusiński and Piotr Pragacz, A formula for the Euler characteristic of singular hypersurfaces, J. Algebraic Geom. 4 (1995), no. 2, 337–351. MR 1311354
- Piotr Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 413–454. MR 974411, DOI 10.24033/asens.1563
- Piotr Pragacz, Algebro-geometric applications of Schur $S$- and $Q$-polynomials, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR 1180989, DOI 10.1007/BFb0083503
- Piotr Pragacz and Jan Ratajski, Polynomials homologically supported on degeneracy loci, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 1, 99–118. MR 1401419
- Marie-Hélène Schwartz, Classes caractéristiques définies par une stratification d’une variété analytique complexe, C. R. Acad. Sci. Paris 260 (1965), 3535–3537 (French). MR 184254
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: J. Amer. Math. Soc. 8 (1995), 793-817
- MSC: Primary 14C17; Secondary 14M15, 32S20, 57R20
- DOI: https://doi.org/10.1090/S0894-0347-1995-1311826-0
- MathSciNet review: 1311826