Polynomial extensions of van der Waerden’s and Szemerédi’s theorems
HTML articles powered by AMS MathViewer
- by V. Bergelson and A. Leibman PDF
- J. Amer. Math. Soc. 9 (1996), 725-753 Request permission
Abstract:
An extension of the classical van der Waerden and Szemerédi theorems is proved for commuting operators whose exponents are polynomials. As a consequence, for example, one obtains the following result: Let $S\subseteq \mathbb {Z}^l$ be a set of positive upper Banach density, let $p_1(n),\dotsc ,p_k(n)$ be polynomials with rational coefficients taking integer values on the integers and satisfying $p_i(0)=0$, $i=1,\dotsc ,k;$ then for any $v_1,\dotsc ,v_k\in \mathbb {Z}^l$ there exist an integer $n$ and a vector $u\in \mathbb {Z}^l$ such that $u+p_i(n)v_i\in S$ for each $i\le k$.References
- Vitaly Bergelson, Ergodic Ramsey theory, Logic and combinatorics (Arcata, Calif., 1985) Contemp. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1987, pp. 63–87. MR 891243, DOI 10.1090/conm/065/891243
- V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), no. 3, 337–349. MR 912373, DOI 10.1017/S0143385700004090
- Aleksander Błaszczyk, Szymon Plewik, and Sławomir Turek, Topological multidimensional van der Waerden theorem, Comment. Math. Univ. Carolin. 30 (1989), no. 4, 783–787. MR 1045910
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625, DOI 10.1515/9781400855162
- H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291 (1979). MR 531279, DOI 10.1007/BF02790016
- H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Analyse Math. 45 (1985), 117–168. MR 833409, DOI 10.1007/BF02792547
- H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem for $k=3$, Discrete Math. 75 (1989), no. 1-3, 227–241. Graph theory and combinatorics (Cambridge, 1988). MR 1001397, DOI 10.1016/0012-365X(89)90089-7
- H. Furstenberg, Y. Katznelson, and D. Ornstein, The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 527–552. MR 670131, DOI 10.1090/S0273-0979-1982-15052-2
- H. Furstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math. 34 (1978), 61–85 (1979). MR 531271, DOI 10.1007/BF02790008
- E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 369312, DOI 10.4064/aa-27-1-199-245
Additional Information
- V. Bergelson
- Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
- MR Author ID: 35155
- Email: vitaly@math.ohio-state.edu
- A. Leibman
- Affiliation: Department of Mathematics, Technion, Haifa 23000, Israel
- Address at time of publication: Department of Mathematics, Stanford University, Stanford, California 94305
- Email: sashal@techunix.technion.ac.il, leibman@math.stanford.edu
- Received by editor(s): June 8, 1994
- Received by editor(s) in revised form: March 30, 1995
- Additional Notes: The first author gratefully acknowledges support received from the National Science Foundation (USA) via grants DMS-9103056 and DMS-9401093. The second author was supported by the British Technion Society.
- © Copyright 1996 American Mathematical Society
- Journal: J. Amer. Math. Soc. 9 (1996), 725-753
- MSC (1991): Primary 11B83, 28D05, 54H20; Secondary 05A17, 05D10
- DOI: https://doi.org/10.1090/S0894-0347-96-00194-4
- MathSciNet review: 1325795