Modular invariance of characters of vertex operator algebras
HTML articles powered by AMS MathViewer
- by Yongchang Zhu PDF
- J. Amer. Math. Soc. 9 (1996), 237-302 Request permission
References
- Tom M. Apostol, Modular functions and Dirichlet series in number theory, Graduate Texts in Mathematics, No. 41, Springer-Verlag, New York-Heidelberg, 1976. MR 0422157, DOI 10.1007/978-1-4684-9910-0
- Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071. MR 843307, DOI 10.1073/pnas.83.10.3068
- A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380. MR 757857, DOI 10.1016/0550-3213(84)90052-X
- Peter Bouwknegt and Kareljan Schoutens, $\scr W$ symmetry in conformal field theory, Phys. Rep. 223 (1993), no. 4, 183–276. MR 1208246, DOI 10.1016/0370-1573(93)90111-P
- John L. Cardy, Operator content of two-dimensional conformally invariant theories, Nuclear Phys. B 270 (1986), no. 2, 186–204. MR 845940, DOI 10.1016/0550-3213(86)90552-3 \key{Do1} \by C.Dong \book Representation of the moonshine module vertex operator algebra \yr1992 \publ preprint
- Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245–265. MR 1245855, DOI 10.1006/jabr.1993.1217 \key{DMZ} \by C.Dong, G.Mason, Y.Zhu \paper Discrete Series of the Virasoro algebra and the moonshine module \jour Preprint \yr1991
- Boris Feigin and Edward Frenkel, Affine Kac-Moody algebras at the critical level and Gel′fand-Dikiĭ algebras, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197–215. MR 1187549, DOI 10.1142/s0217751x92003781
- I. B. Frenkel, Orbital theory for affine Lie algebras, Invent. Math. 77 (1984), no. 2, 301–352. MR 752823, DOI 10.1007/BF01388449 \key{F} \by E.Frenkel \book$W$-algebras and Langlands-Drinfeld correspondence \bookinfo New Symmetries in Quantum field theory \eds J. Frohlich \publ Plenum Press \publaddr New York \yr1987
- B. L. Feĭgin and D. B. Fuchs, Verma modules over the Virasoro algebra, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 230–245. MR 770243, DOI 10.1007/BFb0099939 \key{FKRW} \by E.Frenkel, V.Kac, A.Radul, W.Wang \paper$W_{1+\infty }$ and $W( gl_N )$ with central charge $N$. \jour Pre- print \yr1994
- Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, DOI 10.1090/memo/0494
- I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function $J$ as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 10, , Phys. Sci., 3256–3260. MR 747596, DOI 10.1073/pnas.81.10.3256
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123–168. MR 1159433, DOI 10.1215/S0012-7094-92-06604-X
- Yi-Zhi Huang, Geometric interpretation of vertex operator algebras, Proc. Nat. Acad. Sci. U.S.A. 88 (1991), no. 22, 9964–9968. MR 1133584, DOI 10.1073/pnas.88.22.9964
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- S. Minakshi Sundaram, On non-linear partial differential equations of the parabolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 479–494. MR 0000088, DOI 10.1007/BF03046993
- V. G. Kac, Infinite-dimensional Lie algebras, and the Dedekind $\eta$-function, Funkcional. Anal. i Priložen. 8 (1974), no. 1, 77–78 (Russian). MR 0374210
- Victor G. Kac and Dale H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), no. 2, 125–264. MR 750341, DOI 10.1016/0001-8708(84)90032-X
- Victor G. Kac and Minoru Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math. 70 (1988), no. 2, 156–236. MR 954660, DOI 10.1016/0001-8708(88)90055-2
- Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. With an appendix by J. Tate. MR 890960, DOI 10.1007/978-1-4612-4752-4 \key{Li} \by B.Lian \paper On the classification of simple vert ex operator algebras \jour preprint \yr1992
- Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254. MR 1002038, DOI 10.1007/BF01238857
- A. Rocha-Caridi, Vacuum vector representations of the Virasoro algebra, Vertex operators in mathematics and physics (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 3, Springer, New York, 1985, pp. 451–473. MR 781391, DOI 10.1007/978-1-4613-9550-8_{2}2
- Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 459–566. MR 1048605, DOI 10.2969/aspm/01910459
- Haruo Tsukada, String path integral realization of vertex operator algebras, Mem. Amer. Math. Soc. 91 (1991), no. 444, vi+138. MR 1052556, DOI 10.1090/memo/0444
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
- Weiqiang Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices 7 (1993), 197–211. MR 1230296, DOI 10.1155/S1073792893000212
- Edward Witten, Quantum field theory, Grassmannians, and algebraic curves, Comm. Math. Phys. 113 (1988), no. 4, 529–600. MR 923632, DOI 10.1007/BF01223238 \key{Z} \by Y.Zhu \paper Global vertex operators on Riemann surfaces \jour Commun. Math. Phys. \yr1994 \vol165 No.3
Additional Information
- Yongchang Zhu
- Affiliation: address Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- MR Author ID: 321916
- Received by editor(s): January 24, 1994
- Received by editor(s) in revised form: January 31, 1995
- © Copyright 1996 American Mathematical Society
- Journal: J. Amer. Math. Soc. 9 (1996), 237-302
- MSC (1991): Primary 17B65
- DOI: https://doi.org/10.1090/S0894-0347-96-00182-8
- MathSciNet review: 1317233