## Finite-dimensional representations of quantum affine algebras at roots of unity

HTML articles powered by AMS MathViewer

- by Jonathan Beck and Victor G. Kac PDF
- J. Amer. Math. Soc.
**9**(1996), 391-423 Request permission

## Abstract:

We describe explicitly the canonical map $\chi :$ Spec $U_{\varepsilon }(\tilde {\mathfrak {g}}) \rightarrow$ Spec $Z_{\varepsilon }$, where $U_{\varepsilon } (\tilde {\mathfrak {g}})$ is a quantum loop algebra at an odd root of unity $\varepsilon$. Here $Z_{\varepsilon }$ is the center of $U_{\varepsilon }(\tilde {\mathfrak {g}})$ and Spec $R$ stands for the set of all finite–dimensional irreducible representations of an algebra $R$. We show that Spec $Z_{\varepsilon }$ is a Poisson proalgebraic group which is essentially the group of points of $G$ over the regular adeles concentrated at $0$ and $\infty$. Our main result is that the image under $\chi$ of Spec $U_{\varepsilon }(\tilde {\mathfrak {g}})$ is the subgroup of principal adeles.## References

- E. Abe and K. Suzuki,
*On normal subgroups of Chevalley groups over commutative rings*, Tôhoku Math. J.**28**(1976), 185–198. - J. Beck,
*Braid group action and quantum affine algebras*, Comm. Math. Phys.**165**(1994), 555–568. - —,
*Convex bases of PBW type for quantum affine algebras*, Comm. Math. Phys.**165**(1994), 193–199. - V. Chari and A. Pressley,
*Quantum affine algebras*, Comm. Math. Phys.**142**(1991), 261–283. - —,
*Quantum affine algebras and their representations*, Proceedings of the Banff Conference, Canad. Math. Soc., 1994 (to appear). - I. Damiani,
*A basis of type Poincaré–Birkhoff–Witt for the quantum algebra of $\mathfrak {sl}_{2}$*, J. Algebra**161**(1993), 291–310. - C. De Concini C. and V. G. Kac,
*Representations of quantum groups at roots of $1$*, Progr. in Math., vol. 92, Birkhäuser, 1990, pp. 471–506. - C. De Concini, V. G. Kac and C. Procesi,
*Quantum coadjoint action*, J. Amer. Math. Soc.**5**(1992), 151–190. - —,
*Some remarkable degenerations of quantum groups*, Comm. Math. Phys.**157**(1993), 405–427. - —,
*Some quantum analogues of solvable Lie groups*, Proceedings of the International Colloquium on Geometry and Analysis (Bombay, 1992), Oxford Univ. Press, London and New York, 1995, pp. 41–66. - C. De Concini and C. Procesi,
*Quantum groups*, Lecture Notes in Math., vol. 1565, Springer-Verlag, Berlin and New York, 1994. - V. G. Drinfel$’$d,
*Quantum groups*, Proc. ICM Berkeley**1**(1986), 789–820. - —,
*A new realization of Yangians and quantized affine algebras*, Soviet Math. Dokl.**36**(1988), 212–216. - I. Grojnowski,
*Representations of affine Hecke algebras (and affine quantum $GL_{n}$) at roots of unity*, Internat. Math. Res. Notes**4**(1994), 215–217. - M. Jimbo,
*A q-difference analog of $U({\mathfrak {g}})$ and the Yang–Baxter equation*, Lett. Math. Phys.**10**(1985), 63–69. - —,
*A $q$-analog of $U(gl(N+1))$, Hecke algebras, and the Yang–Baxter equation*, Lett. Math. Phys.**11**(1986), 247–252. - V. G. Kac,
*Infinite dimensional Lie algebras,*, Third Edition, Cambridge Univ. Press, Cambridge, 1990. - V. G. Kac and D. H. Peterson,
*Defining relations of certain infinite–dimensional groups*, Astérisque, hors série (1985), 155–208. - S. Levendorskii, Y. Soibelman, and V. Stukopin,
*The quantum Weyl group and the universal quantum R-matrix for affine Lie algebras*, Lett. Math. Phys.**27**(1993), 253–264. - G. Lusztig,
*Introduction to quantum groups*, Birkhäuser, Boston and Basel, 1993. - —,
*Finite dimensional Hopf algebras arising from quantized universal enveloping algebras*, J. Amer. Math. Soc.**3**(1990), 257–296. - P. Papi,
*Convex orderings in affine root systems*, preprint. - N. Reshetikhin,
*Quasitriangularity of quantum groups at roots of 1*, hep-th/9403105 preprint. - M. Rosso,
*Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra*, Comm. Math. Phys.**117**(1988), 581–593. - R. Stanley,
*Enumerative combinatorics*, Wadsworth, Belmont, CA, 1986. - R. Steinberg,
*Lectures on Chevalley groups*, Yale University, 1967. - V. Tarasov,
*Cyclic monodromy matrices for $\mathfrak {s}l_{n}$ trigonometric $R$–matrices*, Comm. Math. Phys.**158**(1993), 459–483.

## Additional Information

**Jonathan Beck**- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Email: beck@math.harvard.edu
**Victor G. Kac**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: kac@math.mit.edu
- Received by editor(s): October 28, 1994
- Received by editor(s) in revised form: November 9, 1994
- Additional Notes: The first author was supported by an NSF Postdoctoral Fellowship.

The second author was supported in part by NSF grant DMS–9103792. - © Copyright 1996 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**9**(1996), 391-423 - MSC (1991): Primary 17B37, 81R50
- DOI: https://doi.org/10.1090/S0894-0347-96-00183-X
- MathSciNet review: 1317228