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SPLITTINGS OF SURFACES

RICHARD K. SKORA

Let Γ be a finitely generated group and let Dn(Γ) be the space of discrete, faithful
representations of Γ into the group of isometries of hyperbolic n-space divided out
by conjugation. William P. Thurston [Th1] studied this space in the cases where
Γ was the fundamental group of a surface or 3-manifold. Let F be a closed surface
of negative Euler characteristic. For convenience fix a hyperbolic structure on F.
Thurston constructed a compactification of D2(π1F ) which is homeomorphic to the
closed ball of dimension −3χ(F ). The interior is identified with D2(π1F ). Thurston
showed that the boundary of the ball is identified with the space of R-projective
measured geodesic laminations on F [Th1].

John W. Morgan and Peter B. Shalen [Mo-Sh1], [Mo1] showed that for any
Γ and any n the space Dn(Γ) admits a compactification where each ideal point
corresponds to a small action by isometries of Γ on an R-tree.

An R-tree is a metric space (T, d), such that any two distinct points are joined
by a unique arc and every arc is isometric to a segment in R. A group is small if
it does not contain a free group of rank two. An action is small if the stabilizer
of each non-degenerate arc is small. If F is any connected 2-manifold other than a
torus, then the small subgroups of π1(F ) are cyclic.

In the special case Γ = π1F and n = 2, Morgan and Shalen argue in terms
of R-trees to show that their boundary is naturally identified with the space of
projective measured geodesic laminations on F . This recovers Thurston’s result.
Different proofs of Thurston’s result from the point of view of R-trees appeared
later in [Mo-Ot] and [Sk2].

Shalen [Sh] posed several problems stemming from their work. In particular, he
advertised that the most direct proof of the above would be via a positive answer to
the following question. Is every small action of the fundamental group of a closed
surface on an R-tree dual (see Section 2) to a measured geodesic lamination? This
question is answered by the following theorem which was announced in [Sk1].

Theorem 3.2. Let F be a hyperbolic surface of finite area and let π1F × T → T
be a non-trivial action on an R-tree, such that π1E fixes a point for each cusp E
of F . Then π1F × T → T is small if and only if it is dual to a measured compact
geodesic lamination.

There have been partial results towards the above theorem. Morgan-Shalen
[Mo-Sh1], using the techniques of John Stallings, proved it in the case that the
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R-tree is homeomorphic to a simplicial tree. Morgan and Jean-Pierre Otal [Mo-Ot]
proved it under an additional geometric hypothesis (cf. [Sk2]), and Henri Gillet
and Shalen [Gi-Sh] proved it in the case that the action has rank 1 or 2 (see Section
5 for the definition of rank).

Here is an outline of the proof of the main theorem. If π1F ×T → T is dual to a
measured compact geodesic lamination, then it is obvious and well known that the
the action is small. Conversely, suppose π1F × T → T is a small action. The first
step is a result of Morgan and Otal [Mo-Ot], of which a simplified proof was given
by Allen Hatcher [Ha]. This result gives an action π1F × R → R which is dual to
a measured compact geodesic lamination (L, µ), and a π1F -equivalent morphism
φ : R→ T .

Using the hypothesis that π1F × T → T is small, one needs to show that φ is
an isometry. The proof of this begins with the standard observation that the first-
return map for a measured lamination (L, µ) is an interval exchange. In terms of the
dual tree R to (L, µ), this means that a short segment I in R can be covered by non-
overlapping intervals I1, . . . , In to which there are associated elements g1, . . . , gn ∈
π1F such that g1(I1), . . . , gn(In) are again non-overlapping intervals in I. In fact, if
we identify I with an interval in R, then to each gi there corresponds a translation
of R which agrees with gi on Ii. The maps gi|Ii constitute an interval exchange
A = AI on I, whose domain and range consist of the complement of a finite set in
I.

Now if φ is not an isometry, there are intervals I and I ′ in R that meet exactly
in a common endpoint but are mapped isometrically onto the same interval J in
T . The interval exchanges AI and AI′ are conjugated by φ|I and φ|I ′ to interval
exchanges B and B′ on J . Since a composition of interval exchanges is an interval
exchange, any positive word in B and B′ defines an interval exchange on J . One
now fixes a generic point z ∈ J . Then z is in the domain of every positive word in
B and B′, and the restriction of each positive word to a small neighborhood of z in
J coincides both with a translation and with an element of π1F . It is possible to
show that for each positive integer N , the 2N positive words of length N in B and
B′ give rise to 2N distinct elements of π1F . On the other hand, since composition
of translations is commutative, these 2N positive words give rise to at most Nn+m

translations. Using this it is easy to produce a collection Dn of elements of π1F
whose cardinality grows exponentially with N , such that each element of DN fixes
some neighborhood of z in J , and such that maximum word length of the elements
in DN , in terms of a fixed generating set for π1F , grows linearly with N . This leads
to a contradiction to the hypothesis that the action is small.

Thurston’s theory of train tracks is used in this proof in an essential way. We
consider a train track in F carrying the lamination L. In the argument sketched
above, the elements of π1F defined by restricting positive words in B and B′ to
a neighborhood of z are all shown to be represented by smooth (based) loops in
the train track. A key result, proved below as Proposition 2.2, asserts that smooth
loops in a train track which are inequivalent, i.e. do not differ merely by repa-
rameterization, define distinct elements of π1F . This is used to show that the 2N

positive words of length N in B and B′ give rise to 2N distinct elements of π1F .
The paper is organized as follows. In Sections 1 and 2 we review the definitions

of trees and measured geodesic lamination. Also the above-mentioned result of
Morgan-Otal and Hatcher, the theory of train tracks, and interval exchanges are
discussed.



SPLITTINGS OF SURFACES 607

Section 3 contains the proofs of the main theorem. There is an application to
the theory of degenerations of hyperbolic structures on surfaces in Section 4. It
is proved that the set of ideal points of Dn(π1F ) is canonically identified with the
space of projective R-measured geodesic laminations on F . In the case n = 2 this
was first proved by Thurston.

There were many people who contributed to the completion of this work. My
first exposure to R-trees was from the lectures by John Morgan at the CBMS
conference at the University of California at Los Angeles in 1986. I thank Mladen
Bestvina and Mark Feighn for sharing their ideas on this problem. I am grateful to
Chih-Han Sah for introducing me to the connection between measured laminations
and interval exchanges and Ralf Spatzier for much technical advice. Also Marc
Culler and Peter B. Shalen are responsible for many simplifications in the proofs. I
acknowledge the support of Indiana University at Bloomington where I was visiting
while part of this work was completed. Finally I thank the referee for his extensive
revisions which were incorporated verbatim into this manuscript.

1. Definitions

Let X be a metric space. A (closed) segment in X is an arc isometric to a
(closed) interval in R.

An R-tree is a non-empty, metric space (T, d) satisfying

(i) any two points in T are joined by a unique closed segment;
(ii) if two closed segments have a common endpoint, then their intersection is a

closed segment; and
(iii) if two closed segments meet in exactly one common endpoint, then their union

is a closed segment.

According to [Mo-Sh1, Theorem II.1.13], this definition is equivalent to the one
given in the introduction. We shall sometimes refer to an R-tree simply as a tree.

Given an R-tree T and x ∈ T , define Bx = {[x, y] | y ∈ T − {x} }. Define an
equivalence relation by [x, y] ∼ [x, z] if [x, y]∩ [x, z] = [x,w], for some w ∈ T −{x}.
A direction at x is an equivalence class in Bx. If x has exactly two directions, then
say x is an edge, otherwise x is a vertex. Notice that x is an edge if and only if
T − {x} has exactly two connected components.

A morphism from an R-tree T to an R-tree T ′ is a map φ : T → T ′, such that
each non-degenerate segment may be written as a union of segments [x0, x1], [x1, x2],
. . . , [xn−1, xn], where φ|[xi−1, xi] is an isometric embedding. This definition is
equivalent to the condition that for each non-degenerate segment [x, y] there is
a non-degenerate segment [x,w] ⊆ [x, y] such that φ | [x,w] is an isometry. The
morphism φ : T → T ′ is said to fold at a point x ∈ T if there exist points y, y′ ∈ T
such that the segments [x, y] and [x, y′] are non-degenerate and intersect only in
{x}, and are mappped isometically by φ onto the same segment in T ′. It is easy
to show that a morphism φ : T → T ′ which does not fold at any point of T is an
isometry onto a subtree of T ′.

By a group action on an R-tree we mean a left action by isometries. We will
often informally denote a given action of a group Γ on a tree T by Γ×T → T when
no confusion can arise. The action Γ × T → T is said to be minimal if T has no
Γ-invariant proper subtree. It is shown in [Al-Ba] and in [Cu-Mo] that for every
action Γ × T → T there is a Γ-invariant subtree T0 of T such that the restricted
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action Γ × T0 → T0 is minimal. In this paper it will be understood that all the
actions that we consider are minimal, except when we specify to the contrary.

2. Measured laminations

In this section we review known facts about Λ-measured laminations on surfaces.
Let F be a hyperbolic surface of finite area. A geodesic lamination L is a closed
subset of F , such that each path component is a simple geodesic. Let H2 → F be
the universal covering. A measured geodesic lamination (L, µ) in F has a preimage

(L̃, µ̃) in H2. A transverse arc is essential, if some lift (hence every lift) meets each

leaf of L̃ at most once.
A transverse measure (or simply measure) µ is a function defined on the set of

paths transverse to L and taking values in R, such that

(i) µ(γγ′) = µ(γ) + µ(γ′), whenever γ, γ′ are transverse and the product is de-
fined; and

(ii) µ(γ) = µ(γ′), whenever γ, γ′ are transverse and are homotopic through a
1-parameter family of transverse paths.

It is understood that the support of µ is all of L.
We shall say the action on a tree π1F × T → T is dual to the measured ge-

odesic lamination (L, µ) if there is an equivariant bijection p from the connected

components of H2 − L̃ to the vertices of T , such that d(p(x), p(y)) = µ̃(γ), where

γ : [0, 1] → H2 is a transverse arc from x to y meeting each leaf of L̃ at most
once. It is proved in [Mo-Sh4] that every measured geodesic lamination is dual to
an action on an R-tree, which is clearly unique up to equivariant isometry. It is
also clear that the dual action is small.

We now review the theory of train tracks (see [Th1] or [Pe-Ha]). A smooth graph
is an embedded graph τ ⊆ F , such that for each point p ∈ τ , there is a smooth open
arc in τ through p and any two such arcs are tangent at p. If C is an open subset of
F with compact closure, and if the frontier of C is contained in the smooth graph τ ,
then C can be identified in a natural way with the interior of a compact manifold-
with-corners Ĉ. (If we give C the riemannian metric inherited from the hyperbolic

metric on F , we may define Ĉ to be the metric-space completion of C.) We define
the smooth Euler characteristic χsmooth(C) to be χtop(C)− n(C), where χtop(C)
denotes the topological Euler characteristic of C and n(C) denotes the number of

corners of Ĉ. It is straightforward to show that for any open subset C of F whose
frontier is contained in τ , we have χsmooth(C) =

∑
C χsmooth(C), where C ranges

over the components of C − τ . We define a train track in F to be a smooth graph
τ ⊂ F such that χsmooth(C) < 0 for every component C of F − τ .

A train track τ carries a lamination L if there is a map r : F → F homotopic
to the identity, such that r|α : α → τ is a smooth immersion for each smooth arc
α ⊆ L. The map r is called a supporting map. Every geodesic lamination is carried
by a (non-unique) train track ([Th1] or [Pe-Ha, Theorem 1.6.5]).

In Section 3 we will need a result, Proposition 2.2 below, concerning smooth
loops in train tracks. Let τ be a smooth graph in a surface F , and let γ : [0, 1]→ τ
be a loop based at a point ∗ ∈ τ . We shall term γ a smooth loop if the corresponding
map γ : S1 → τ ⊂ F is a smooth immersion of S1 in F . If ∗ is not a vertex of
τ , the counterclockwise orientation of S1 at the base point 1 gives rise to a local
orientation determined by γ.
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Two smooth loops γ, γ′ based at ∗ ∈ τ will be termed equivalent if γ′ = γ ◦h for
some orientation-preserving diffeomorphism h : [0, 1]→ [0, 1].

Lemma 2.1. Let τ be a train track in a surface F , and let γ be a smooth loop in
τ . Then a lift γ̃ of γ to the universal covering surface H2 of F is an embedding of
[0, 1] in H2.

Proof. If γ̃ is not an embedding, then there exist s < t in [0, 1] such that γ̃(s) = γ̃(t)
and γ̃|(s, t) is one-to-one. Since H2 is simply connected, the Jordan curve γ̃([s, t])

bounds an open disk C ⊂H2. The manifold-with-corners Ĉ is a closed disk with at
most one corner, and hence χsmooth(C) > 0. But χsmooth(C) =

∑
C χsmooth(C),

where C ranges over the components of C−τ , and the terms in this sum are negative
according to the definition of a train track.

Proposition 2.2. Let τ be a train track in a surface F , let ∗ be a base point in
τ , and let γ and γ′ be inequivalent smooth loops in τ based at ∗. Then γ and γ′

represent distinct elements of π1F .

Proof. Let ∗̃ be a base point in the universal covering surface H2 lying above ∗.
Let γ̃ and γ̃′ denote the lifts of γ and γ′ having initial point ∗̃. We must show
that the terminal points γ̃(1) and γ̃′(1) are distinct. Suppose to the contrary that
γ̃(1) = γ̃′(1). By Lemma 2.1, γ̃ and γ̃′ are embeddings, so that γ̃([0, 1]) and γ̃′([0, 1])
are smooth arcs in H2, which by our assumption have the same end points. Since
γ and γ′ are inequivalent, the arcs γ̃([0, 1]) and γ̃′([0, 1]) are distinct. Hence there

are subarcs δ̃ ⊂ γ̃ and δ̃′ ⊂ γ̃′ such that ∂δ̃ = ∂δ̃′ and int δ̃ ∩ int δ̃′ = ∅. The
Jordan curve δ̃ ∪ δ̃′ bounds an open disk C ⊂ H2. The manifold-with-corners
C̃ is a closed disk with at most two corners, and hence χsmooth(C) ≥ 0. But
χsmooth(C) =

∑
C χsmooth(C), where C ranges over the components of C−τ , and

the terms in this sum are negative according to the definition of a train track.

The theory of train tracks can be used to prove the following result, which is the
starting point for the proof of our main theorem. The result is essentially equivalent
to a special case of the main result of Morgan and Otal’s paper [Mo-Ot]. However,
because geodesic laminations (and train tracks) are not discussed in [Mo-Ot], it is
formally easier to deduce the theorem from the arguments in Hatcher’s paper [Ha].

Theorem 2.3 (Morgan-Otal). Let F be a hyperbolic surface of finite area and let
π1F × T → T be an action on an R-tree. Then there exist an action on an R-tree
π1F ×R→ R and a π1F -equivariant morphism φ : R→ T , such that π1F ×R→ R
is dual to a measured geodesic lamination (L, µ).

Furthermore, φ does not fold at an edge point; and if π1E fixes a point for each
cusp E of F , then L is compact.

Proof. It is shown on p. 86 of [Ha] that there exists an equivariant mapf̃ : H2 → T
which is transverse in the sense of [Mo-Sh3], and thus defines a topological measured

lamination (L0, µ0) on H2. According to Proposition 3.3 of [Ha], the map f̃ may be
chosen so that (L0, µ0) is carried by some train track τ in the sense defined above.
(Hatcher uses the term “train track” to mean what we call a smooth graph, and
uses “good train track” to mean a train track in our sense.) It now follows from the
first two paragraphs on p. 85 and the last paragraphs on p. 87 of [Ha] that there
exist an action π1F ×R0 → R0 on an R-tree, dual to (L0, µ0), and an equivariant
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morphism φ0 : R0 → T . The transversality of the map f̃ implies that φ0 does not
fold at an edge point.

It follows from [Pe-Ha, Theorem 2.7.4] that τ carries some geodesic measured
lamination (L, µ) with the same weights as (L0, µ0). This implies that if π1F×R→
R is an action dual to (L, µ), then π1F × R → R has the same length function
(in the sense of [Mo-Sh1], [Al-Ba] and [Cu-Mo]) as π1F × R0 → R0. (Indeed,
the length of any element g ∈ π1F with respect to the action on R or R0 is the
minimum of µ(γ) or µ0(γ), where γ ranges over all closed curves representing the
conjugacy class of g. If g is given, this minimum can be computed in terms of
the weights of (L, µ) or (L0, µ0).) It now follows from [Al-Ba] or [Cu-Mo] that the
minimal π1F -invariant subtree of R0 is π1F -equivariantly isometric to R (which is
its own minimal π1F -invariant subtree). The required π1F -equivariant morphism
π : R→ T can now be obtained by pre-composing φ0 with an equivariant isometry
of R onto the minimal π1F -invariant subtree of R0.

If π1E fixes a point of E for each cusp E of F , it is easy to modify the construction
of φ0 so as to guarantee that φ0 is locally constant on a neighborhood of ∂F . This
implies that L0 is compact and is carried by a compact train track τ , and hence L
is compact as well.

Finally we review how a measured compact geodesic lamination determines an
interval exchange. Let I be a closed, finite interval, and let I1, . . . , In ⊆ I be
pairwise disjoint open intervals whose closures cover I. Then an interval exchange
on I is a map A :

⋃
Ii → I such that A|Ii is a translation; and A(I1), . . . , A(In) are

pairwise disjoint. Notice each power of A is defined at all but finitely many points
of I.

Fix a measured compact geodesic lamination (L, µ). Let α be an arc transverse
to L with α ∩ L 6= ∅. Fix both an orientation and a transverse orientation on α.

For each point u ∈ α ∩L there is a unique oriented arc γu contained in a leaf of
L such that

(i) the initial point of γu is u and its terminal point lies on α;
(ii) the orientation of γu at its initial and terminal points agrees with the trans-

verse orientation of α; and
(iii) no non-degenerate subarc of γu satisfies (i) and (ii).

Furthermore, there are finitely many disjoint open subintervals α1, . . . , αn ⊂ α
covering α∩L such that for each i ∈ {1, . . . , n}, the oriented arcs γu for u ∈ αi∩L
form the product family Fi. The terminal points of the arcs in the family Fi
constitute a set of the form βi ∩ L where βi is an open subinterval of α. The βi
cover α ∩ L, and they may be taken to be disjoint. We have µ(βi) = µ(αi).

Now let I be an oriented interval of length µ(α). There are uniquely determined
disjoint open subintervals I1, . . . , In in I which are ordered in I in the same way
that the αi are ordered in α and such that each Ii has length µ(αi). Similarly,
there are uniquely determined disjoint open subintervals J1, . . . , Jn in I which are
ordered in I in the same way that the βi are ordered in α and such that each Ii
has length µ(βi) = µ(αi). Let A :

⋃
Ii → I be the unique interval exchange such

that A(Ii) = Ji for each i = 1, . . . , n.
Each point u ∈ α ∩ L determines a (possibly degenerate) closed subinterval

ηu = [h−u , h
+
u ] of I: here h−u = µ(α−u ), where α−u is the open subinterval of α

bounded by u and the initial point of α, and h+
u = µ(α+

u ), where α+
u is the open

subinterval of α bounded by u and the terminal point of α. For any u we have
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A(ηu) = ηv, where v denotes the terminal point of γu. In fact A|ηu is the unique
translation mapping ηu onto ηv. This characterizes the interval exchange A directly
in terms of the measured lamination (L, µ) and the oriented, transversely oriented
transverse arc α.

If τ is a train track carrying a given measured lamination (L, µ), with supporting
map r, and if α ⊂ F is any arc such that r(α) is a single point of τ which is not
a vertex, then α is transverse to L. In this case we may choose the arcs αi in
the above construction in such a way that for each i ∈ {1, . . . , n}, the arcs in the
parallel family Fi are all projected by r to mutually equivalent smooth loops in
τ , based at ∗ = r(α). Thus the Fi determine smooth loops γ1, . . . , γn that are
well-defined up to equivalence. In particular they determine elements [γ1], . . . , [γn]
of π1F = π1(F, ∗).

Finally, we point out how the interval exchange A is related to the dual tree to
(L, µ). For this purpose we choose a base point ∗̃ ∈ H2 that projects to ∗. The
arc α has a unique lift α̃ containing ∗̃. Let us use ∗̃ to identify π1F with the group
of covering transformations in H2. Let π1F × T → T denote an action of π1F
on an R-tree which is dual to (L, µ), and let p : H2 → T be the π1F -equivariant
map appearing in the definition of a dual action. Then p(α̃) is a segment [x, y] of
length µ(α): here x and y respectively denote the images of the initial and terminal
points of α̃. Let us identify [x, y] isometrically with the oriented interval I in such
a way that x becomes the initial point. Then A becomes an interval exchange
on [x, y]. The above characterization of A implies that for i = 1, . . . , n we have
A|Ii = [γi]|Ii. This description of the interval exchange in terms of the dual tree
will be the starting point for the proof of our main theorem in the next section.

3. The main theorem

In this section we prove the main theorem. The proof of Proposition 3.1 contains
all the hard work. It depends on three lemmas. The proof makes strong use of
Proposition 2.2. Some of the ideas in the proof are derived from arguments used
in [Pla], [Mo-Sh2], [Mo2] and [Mo-Sk].

Proposition 3.1. Let F be a hyperbolic surface of finite area and let π1F×R→ R
be an action on an R-tree which is dual to a measured compact geodesic lamination.
Let π1F×T → T be an action on an R-tree and let φ : R→ T be a π1F -equivariant
morphism. If φ folds at some vertex point, then the action on T is not small.

Proof. Suppose φ folds at the vertex x ∈ R, so there are non-degenerate segments
[x, y] and [x, y′] in T such that [x, y]∩ [x, y′] = {x}; φ|[x, y], φ|[x, y′] are embeddings;
and φ([x, y]) = φ([x, y′]). Let π1F × R → R be dual to the measured compact

geodesic lamination (L, µ) with corresponding map p : H2−L̃ → R. There is some

component C̃ of H2 − L̃, such that p(C̃) = x.
There is an essential arc α̃ whose end points are mapped by p to x and y.

Similarly, there is an essential arc α̃′ whose end points are mapped to x and y′.
The arcs α̃ and α̃′ meet in a single point ∗̃ ∈ C̃ which we regard as a base point
for H2. The image of ∗ in F will be regarded as a base point for F . After possibly
replacing [x, y], [x, y′] and α̃, α̃′ by shorter segments and arcs, respectively, suppose
that α̃ ∪ α̃′ is disjoint from its translates. It follows that α̃ ∪ α̃′ projects to an
embedded arc α ∪ α′ in F .
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Now L is carried by some train track τ with supporting map r. After possibly
rechoosing the train track and r, assume r(α ∪ α′) is a single point which is not a
vertex of the train track.

Choose an orientation and a transverse orientation on α ∪ α′. According to
the discussion at the end of Section 2, we can associate to the oriented, trans-
versely oriented, L-transverse arc α and oriented interval I, an interval exchange
A :
⋃n
i=1 Ii → I and smooth loops γ1, . . . , γn in τ , based at ∗ = r(α∪α′) (and well-

definied up to equivalence). In the same way we can associate to α′ and oriented
interval I ′, an interval exchange A′ :

⋃n
i=1 I

′
i → I ′ and smooth loops γ′1, . . . , γ

′
n in

τ , based at r(α ∪ α′).
The γi and γ′j all determine the same local orientation of τ at x because they

are all defined using a fixed transverse orientation of α ∪ α′. It is also clear from
the constructions in Section 2 that the γi and the γ′j are all minimal smooth loops
in the sense that none of them has a non-degenerate proper subpath which is a
smooth loop based at ∗.

Since α and α′ correspond to distinct boundary components of C̃, no γi is equiv-
alent to any γ′j .

The γi and γ′j represent elements [γi] and [γ′j ] of π1(F, ∗). Using the base point

∗̃ to identify π1(F, ∗) with the group of covering transformations in H2, we may
regard [γi] and [γ′j ] as covering transformations. Let us also identify I and I ′

with [x, y] and [x′, y′] respectively, in such a way that x and x′ become the initial
points. According to the final paragraph of Section 2 we have A|Ii = [γi]|Ii for all
i = 1, . . . , n and A′|I ′j = [γj ]|Ij for all j = 1, . . . ,m.

Now let J denote the segment φ([x, y]) = φ([x, y′]). Set Ji = φ(Ii) for i =
1, . . . , n and J ′j = φ(I ′j) for j = 1, . . . ,m. Conjugating the interval exchanges A
and A′ by the isometries φ|[x, y] and φ|[x, y′], we obtain two interval exchanges B
and B′ on J . In view of the equivalence of φ we have:

B|Ji = [γi]|Ji for i = 1, . . . , n, and

B′|J ′j = [γ′j ]|J ′j for j = 1, . . . ,m.
(∗)

Let Θ denote the semigroup generated by B and B′. We fix a point z ∈ J
such that all elements of Θ are defined at z. For each positive integer N we set
CN = {0, 1}N ; thus CN has cardinality 2N . For each c = 〈ε1, . . . , εN〉 ∈ CN we
define an element θc ∈ Θ by setting θc = BN ◦ · · · ◦ B1, where Bp = B whenever
ε = 0, and Bp = B′ whenever ε = 1. Since the domain of B consists of n intervals
on each of which B restricts to a translation, and the domain of B′ consists of
m intervals on each of which B′ restricts to a translation, and since composition
of translations is commutative, the set {θc(z) : c ∈ CN} has cardinality at most
Nn+m.

There is a natural way of associating to each c ∈ CN an N -tuple of smooth loops
〈η1, . . . , ηN 〉 in τ . To do this we write c = 〈ε1, . . . , εN 〉 ∈ CN and define B1, . . . , BN
as in the above definition of θc. If p ∈ {1, . . . , N} is an index such that εp = 0
and if i ∈ {1, . . . , n} denotes the index such that Bp−1 ◦ · · · ◦ B1(z) ∈ Ji, we set
ηp = γi. On the other hand, if εp = 1 and if j ∈ {1, . . . ,m} denotes the index such
that Bp−1 ◦ · · · ◦B1(z) ∈ J ′j , we set ηp = γ′j . The composite loop ωc = ηN ∗ · · · ∗ η1

defines an element [ωc] of π1F , which we identify with a covering transformation.
It follows from the observation (*) above that [ωc](z) = θc(z), and indeed that [ωc]
and θc agree on a neighborhood of z ∈ J .
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Since the γi and the γ′j all determine the same local orientation of τ and ∗, the
loop ωc is smooth for every c ∈ CN . Since the γi and γ′j are all minimal smooth
loops and since no γi is equivalent to any γ′j , the smooth loops ωc and ωc′ are
inequivalent whenever c and c′ are distinct elements of CN . It therefore follows
from Proposition 2.2 that the 2N elements c ∈ CN determine 2N distinct elements
[ωc] of π1F .

On the other hand, the set {θc(z)|c ∈ CN} = {[ωc](z)|c ∈ CN} has cardinality at
most Nn+m. Hence there is a sequence 〈DN 〉N≥1 of subsets of π1F such that

(i) DN ⊂ {[ωc]|c ∈ CN};
(ii) the cardinality of DN grows exponentially as N →∞; and
(iii) for each N , the elements of DN , regarded as covering transformations, all

agree at z.

For each N set EN = D−1
N DN ⊂ π1F . Then the cardinality of EN grows expo-

nentially as N →∞, and the EN are all contained in the stabilizer of z. Moreover,
since each element of DN has the form [ωc] and thus agrees with an interval ex-
change θc on some neighborhood of z in J , each element of EN actually fixes some
neighborhood of z in J . Hence any two elements of the set E =

⋃∞
N=1 EN have a

common fixed segment in T . If the action of Γ on T is small, the stabilizer of every
segment in T is cyclic. This implies that the group generated by E is abelian–and
therefore cyclic since it is contained in π1F .

To complete the proof we use a simple corollary of Dehn’s algorithm for the
surface group π1F [L-S, Chapter V, Section 4], namely that any cyclic subgroup Z
of π1F has linear extrinsic growth. This means that if S is a finite generating set for
π1F , then the number of elements of Z that can be expressed as words of at most
a given length l in S is bounded by a linear function of l. Note that if K denotes
the maximum length in a fixed generating set S of elements γ1, . . . , γn, γ

′
1, . . . , γ

′
m,

then for each N the elements of the set EN are all of lengh at most 2KN . Since
the cardinality of EN grows exponentially with N , the linear extrinsic growth of
the cyclic group generated by E is not cyclic, and so the action of π1F on T is not
small.

Here is our main result. In the following statement, π1E is identified via the
inclusion homomorphism with a subgroup of π1F which is well-defined up to con-
jugation.

Theorem 3.2. Let F be a hyperbolic surface of finite area and let π1F × T → T
be a non-trivial action on an R-tree, such that π1E fixes a point for each cusp E
of F . Then π1F × T → T is small if and only if it is dual to a measured compact
geodesic lamination.

Proof. Suppose π1F × T → T is dual to a measured geodesic lamination (L, µ). If
an element of π1F fixes a segment in T , then it leaves invariant each component of
the corresponding parallel family of leaves in L̃. In particular, the stabilizer of a
segment is contained in the stabilizer of some leaf and is necessarily cyclic.

Now suppose that the action is small. By Theorem 2.3 there exist an action
π1F × R → R which is dual to a measured compact geodesic lamination (L, µ)
and a π1F -equivariant morphism φ : R → T . Furthermore, φ does not fold at an
edge point. Since the action on T is small, Proposition 3.1 says φ does not fold
at a vertex. Hense φ maps R isometrically onto a subtree T0 of T . Since φ is
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π1F -equivariant and π1F × T → T is minimal, we must have T0 = T . This shows
that π1F × T → T is dual to (L, µ).

4. Degenerations of hyperbolic structures on surfaces

If Γ is a finitely generated group, we let Dn(Γ) denote the space of discrete,
faithful representations of Γ in the isometry group of hyperbolic n-space, modulo
conjugation. In [Mo-Sh1], Morgan and Shalen construct a canonical compactifica-

tion D̂n(Γ) of Dn(Γ). The “boundary” ∂Dn(Γ) = D̂n(Γ)−Dn(Γ) is identified with
a compact subset of the “projective space” P = ([0,∞)Γ−{0})/R+: here R+ acts
on [0,∞)Γ − {0} by conjugation, [0,∞)Γ has the product topology, [0,∞)Γ − {0}
has the subspace topology, and the orbit space P is given the quotient topology.

Now let F be a hyperbolic surface of finite area. Each measured lamination
(L, µ) on F determines a length function ` : πF → R, where `(G) is defined to be
the intersection number of L of the closed geodesic representing the conjugacy class
of g. We may regard ` as a point of [0,∞)π1F − {0}, and its image in P is called
the projectivized length function associated to (L, µ). We denote by PML(F ) the
subset of P consisting of all projectivized length functions associated to measured
laminations on F .

The purpose of this section is to point out that the following theorem follows
from Theorem 3.2 above together with the results of [Mo-Sh1]. The case n = 2
was proved by Thurston (see [FLP]) and subsequent proofs were given in [Mo-Sh1],
[Mo-Ot] and [Sk2].

Theorem 4.1. Let F be a hyperbolic surface of finite area. For all n ≥ 2 we have
∂Dn = PML(F ).

Proof. Recall from [Mo-Sh1, II.2.11] that every action Γ × T → T of a group
on an R-tree determines a length function ` : π1F → R defined by `(g) =
minx∈T d(x, g · x). If the action is non-trivial, that is, if it has no fixed point
in T , then ` 6= 0 by [Mo-Sh1, Proposition II.2.15]. We may therefore regard ` as
an element of [0,∞)π1F − {0}, and its image in P is called the projectivized length
function associated to the action of Γ on T . For any finitely generated group Γ
we denote by PSLF(F ) the set of all projectivized length functions defined by
non-trivial small actions of Γ on R-trees. According to [Mo-Sh1, Theorem II.4.7],
for any finitely generated group Γ and any n ≥ 2 we have ∂Dn(Γ) ⊂ PLF(F ).
(The actions considered in [Mo-Sh1] are not necessarily minimal, but it is shown
in [Cu-Mo] and in [Al-Ba] that a length function defined by a non-trivial action is
also defined by a non-trivial small minimal action.)

When Γ is the fundamental group of a finite-area hyperbolic surface F and
Γ × T → T is the action dual to a compact measured lamination (L, µ) on F , it
is straightforward to check that the length function defined by the action coincides
with the length function defined by (L, µ) in the above sense. Hence it follows
from Theorem 3.2 above that PSLF(π1F ) = PML(F ). In particular we have
∂Dn ⊂ PML(F ). To prove the reverse inclusion, one uses the fact [Pe-Ha] that
PML(F ) has a dense subset consisting of rational points. By definition these arise
from measured laminations of the form (L, µ), where L is a disjoint union of simple
closed curves and µ is integer-valued. But it is shown, for example, in [Mo-Sh1,
Proposition III.3.2] that every rational point of PML(F ) lies in ∂D2. Since ∂D2 is
closed in P it follows that PML(F ) ⊂ ∂D2. Finally, it is obvious that ∂D2 ⊂ ∂Dn,
so that ∂D2 ⊂ ∂Dn.
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It is natural to ask whether a proof of the main theorem of [Th3] can be based
on Theorem 4.1.
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