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SW ⇒ Gr: FROM THE SEIBERG-WITTEN EQUATIONS

TO PSEUDO-HOLOMORPHIC CURVES

CLIFFORD H. TAUBES

0. Introduction

The purpose of this article is to explain how pseudo-holomorphic curves in a sym-
plectic 4-manifold can be constructed from solutions to the Seiberg-Witten equa-
tions. As such, the main theorem proved here (Theorem 1.3) is an existence theorem
for pseudo-holomorphic curves. This article thus provides a proof of roughly half of
the main theorem in the announcement [T1]. That theorem, Theorem 4.1, asserts
an equivalence between the Seiberg-Witten invariants for a symplectic manifold
and a certain Gromov invariant which counts (with signs) the number of pseudo-
holomorphic curves in a given homology class.

The Seiberg-Witten invariants were introduced to mathematicians by Witten
[W] based on his joint work with Nat Seiberg [SW1], [SW2]. A description of these
invariants is given in Section 1. (See also [KM1], [T1].) Suffice it to say here that
when X is a compact, oriented, 4-dimensional manifold with

b+2 ≡ 1
2 (rank(H2(X ;R)) + signature)(0.1)

at least 2, then these invariants define a diffeomorphism invariant map, SW, from
the set of equivalence classes, Spin, of SpinC structures on X to Z. Note that the
set Spin has naturally the structure of a principal H2(X ;Z) bundle over a point.

A symplectic 4-manifold is a pair (X,ω), where X is a 4-manifold and where
ω is a closed 2-form with ω ∧ ω nowhere zero. Thus, a symplectic 4-manifold has
a canonical orientation. A symplectic 4-manifold also has a complex line bundle,
K, (called the canonical bundle) which is canonical up to isomorphism. And, as
explained in [T1] or [T2], a symplectic 4-manifold has a canonical equivalence class

of SpinC structure. The latter endows Spin with a base point and so gives the
identification

Spin ≈ H2(X ;Z).(0.2)

(Both the identification of Spin and the choice of orientation do not change under
a continuous deformation of the symplectic form.) In the ensuing discussion, the
canonical orientation for a symplectic manifold and the identification in (0.2) will
be assumed implicitly. Thus, with (0.2) understood, SW defines a map

SW : H2(X ;Z)→ Z.(0.3)
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(Note that SW as a map from Spin is diffeomorphism invariant, but that the
identification in (0.2) is not. The effect of a diffeomorphism on (0.3) depends on
the behavior of c1(K).)

A submanifold Σ of a symplectic manifold is called symplectic when the restric-
tion of the symplectic form to TΣ is non-degenerate.

With the preceding understood, the following is a corollary to Theorem 1.3 (with
Proposition 7.1):

Theorem 0.1. Let X be a compact, oriented, 4-dimensional symplectic manifold
with b+2 > 1. Let e 6= 0 ∈ H2(X ;Z) be a class with SW(e) 6= 0. Then the Poincaré
dual to e is represented by the fundamental class of an embedded, symplectic curve.
And, this curve has genus g = 1 + e · e.

In the preceding, · denotes the cup product pairing from H2(X ;Z) to Z. Thus,
the number e · e is the value of the cup of e with itself on X ’s fundamental class.

(Remark that Simon Donaldson [Do] announced last year a theorem to the effect
that classes e ∈ H2(X ;Z) with very large positive pairing with ω have embedded,
symplectic representatives.)

Various other consequences of Theorem 1.3 and Proposition 7.1 were discussed
in [T1]. In particular, consider:

Theorem 0.2. Let X be a compact, oriented, 4-manifold with b+2 > 1 and with a
symplectic form ω. Then

(1) The Poincaré dual of c1(K) is represented by the fundamental class of an
embedded, symplectic curve.

(2) Let e ∈ H2(X ;Z) denote a homology class which is represented by an em-
bedded sphere with self-intersection number −1. Then e is represented by a
symplectically embedded 2-sphere and 〈c1(K), e〉 = ±1.

(3) If c1(K) has negative square, then X can be blown down along a symplectic
sphere of self-intersection −1.

(4) Suppose that X cannot be blown down along a symplectic sphere of self-
intersection −1. Then the signature of the intersection form of X is no
smaller than − 4

3 (1− b1)− 2
3 b2. (The bi’s are the Betti-numbers of X.)

(5) If c1(K) has square zero and X has no symplectically embedded 2-spheres
with self-intersection −1, then c1(K) is Poincaré dual to a disjoint union
of embedded, symplectic tori with zero self-intersection number. In fact, any
class in H2(X ;Z) with non-zero Seiberg-Witten invariant is represented by
disjoint, symplectically embedded tori with square zero.

(6) Symplectic manifolds have “simple type” in that only the dimension zero
Seiberg-Witten invariants are non-zero. That is, SW(e) = 0 if c1(K)·e−e·e 6=
0.

Note that Assertion (2) above is a refinement due to Daniel Ruberman of a
somewhat weaker assertion in [T1]. Also, Assertion (6) can be proved using the
afore-mentioned announced results of Donaldson.

Note that symplectic submanifolds are closely related to pseudo-holomorphic
submanifolds. The definition of the latter requires the introduction of an almost
complex structure J for X . (This is an endomorphism whose square is minus the
identity.) A submanifold Σ is called pseudo-holomorphic (after Gromov [Gr]) when
J maps TΣ to itself. An almost complex structure is said to be ω-compatible when
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the bilinear form

ω(·, J(·))(0.4)

defines a Riemannian metric on X . If Σ is pseudo-holomorphic for an ω-compatible
almost complex structure, then Σ is also symplectic. Conversely, if Σ is symplectic,
then there is an ω-compatible almost complex structure which makes Σ pseudo-
holomorphic. Thus, the preceding theorems assert the existence of certain types of
pseudo-holomorphic submanifolds.

Theorem 1.3 has applications to manifolds with b+2 = 1 also. As noted in [T1],
the following result follows from Theorem 1.3 (with Proposition 7.1) and a theorem
of Gromov in [Gr]:

Theorem 0.3. The manifold CP2 has a unique (up to symplectomorphism) sym-
plectic structure.

The proofs of Theorems 0.1–0.3 were sketched in [T1], and further remarks are
provided in Section 7 of this article. Section 1 of this article reviews the Seiberg-
Witten equations and it provides, in its final subsection, an overview of the contents
of the subsequent sections.

At this point, the author wishes to acknowledge a large debt of gratitude to
Tomasz Mrowka for his advice, suggestions and support during the production of
this manuscript.

1. The Seiberg-Witten equations

The Seiberg-Witten invariants of a compact, oriented, dimension 4 manifold X
constitute a map from the set of equivalence classes of SpinC structures on X (cov-
ering the frame bundle) to the integers. They are defined when the characteristic
number b+2 in (0.1) is greater than 1. (There is a more complicated structure in the
case where b+2 = 1.) These invariants were first described in [W], and the reader
is also referred to [KM1] and [T2]. (A more complete description is in preparation
with multiple authors.) What follows is a brief description of the invariants. This
section ends with the statement of Theorem 1.3 (which is the principal result in this
article), a discussion of the strategy for the proof, and an outline of the contents of
subsequent sections.

(a) Some spin geometry. Here is a five part digression to review some crucial
4-dimensional geometry.

Part 1. The Lie groups SO(4) and SpinC(4) can be given as

SO(4) = (SU(2)× SU(2))/{±1},(1.1)

and

SpinC(4) = (U(1)× SU(2)× SU(2))/{±1},(1.2)

where {±1} acts on all factors in both cases in the obvious way.

Part 2. Fix a Riemannian metric on X . The metric defines the principal SO(4)

bundle of orthonormal frames on X . A SpinC structure (denoted by L) is simply

a lift of this SO(4) principal bundle to a SpinC(4) principal bundle. The set of
equivalence classes of such lifts has, in a natural way, the structure of a principal
H2(X ;Z) bundle over a point. This principal H2(X ;Z) bundle, Spin, is canonically
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defined and independent of the original choice of metric on X . One should think
of the Seiberg-Witten invariant as a map from Spin to Z.

Part 3. The group SO(4) has two evident representations into SO(3)=SU(2)/{±1},
which will be called λ+ and λ−. They are distinguished by the convention that the
associated R3 bundles to the frame bundle of X be isomorphic to the bundles Λ+

of self-dual 2-forms and Λ− of anti-self-dual 2-forms, respectively.
Likewise, the group SpinC(4) has two evident representations, s+ and s−, into

U(2) = (U(1) × SU(2))/{±1}. The convention is that the composition of s+ with
the quotient homomorphism U(2)→ U(2)/Center = SO(3) factors through SO(4)

via λ+. Anyway, with the preceding understood, given a SpinC structure L on X ,
introduce the C2-vector bundles

S+, S− → X(1.3)

which are associated to L via the representations s+ and s−, respectively. These
bundles inherit natural fiber metrics.

Let L and L · e be elements in Spin, where e ∈ H2(X ;Z). Then, the bundles S+

for these two SpinC structures are related by S+(L · e) = S+(L) ⊗ E, where E is
the complex line bundle with first Chern class c1(E) = e.

Part 4. Clifford multiplication, c, maps T ∗X into the skew adjoint endomorphisms
of S+ ⊕ S−; it is characterized by the equality c(v)2 is multiplication by −|v|2. In
particular, c induces maps

σ : S+ ⊗ T ∗X → S−(1.4)

(by duality) and also c+ : Λ+ → End(S+). The adjoint of the latter will be denoted
by

τ : End(S+)→ Λ+ ⊗ C;(1.5)

it maps a self-adjoint endomorphism into an imaginary valued form. To be more
explicit, let {eν}4ν=1 be an oriented, orthonormal frame at a point of X . Then
τ(η⊗η∗) = −2−1 · 〈η, c(eν)c(eµ)η〉(eν ∧eµ). Here, 〈 , 〉 denotes the Hermitian inner
product on S+.

Part 5. Let A be a connection on L ≡ det(S+). The connection A with the Levi-
Civita connection on T ∗X induces a covariant derivative, ∇A on S+. This maps
sections of S+ into sections of S+ ⊗ T ∗X . The composition of this last map with
σ in (1.4) defines the Dirac operator DA, a first order elliptic operator mapping
sections of S+ to sections of S−. That is, if ψ is a section of S+, then the action of
DA on ψ is given by

DAψ ≡ σ(∇Aψ).(1.6)

(b) The Seiberg-Witten equations. With the preceding understood, remark
that the Seiberg-Witten equations are equations for a pair (A,ψ), where A is a
connection on L = det(S+) and where ψ is a section of S+. These equations read

DAψ = 0 and P+FA = 1
4τ(ψ ⊗ ψ∗),(1.7)

where P+ : Λ2T ∗X → Λ+ is the orthogonal projection. It proves useful at times to
consider perturbations of (1.7) which have the form

DAψ = 0 and P+FA = 1
4τ(ψ ⊗ ψ∗) + µ,(1.8)

where µ is a fixed, imaginary valued, anti-self-dual 2-form on X .
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The Seiberg-Witten invariant for the given SpinC structure L ∈ Spin is obtained
by making a suitable count of solutions of (1.6) or (1.7). Remark here that the
group C∞(X ;S1) acts on the space of solutions to (1.7); a map ϕ sends (A,ψ) to
(A − 2ϕ−1 dϕ, ϕψ). Here, S1 is thought of as the unit sphere in C. (This group
acts freely at solutions where ψ is not identically zero.) The quotient of the space
of solutions to (1.7) by C∞(S1;X) will be denoted by M . (The dependence on the

SpinC structure and on the choice of µ in (1.7) will usually be suppressed.)
Here are five crucial facts about M :

Fact 1. When b+2 ≥ 1, the space of solutions to (1.7) and (1.8) will contain no
points where ψ ≡ 0 for a generic metric or choice of µ as long as c1(L) is rationally
non-zero. Here, generic means off a set of codimension b+2 . (This follows from a
theorem of Uhlenbeck in [FU].)

Fact 2. The space M has naturally the structure of a real analytic variety. When
b+2 ≥ 1, the space M will be a smooth manifold for a generic choice of µ in (1.8).
(Here, generic means a Baire subset of C∞(Λ+).) The dimension of this manifold
is computed with the help of the Atiyah-Singer index theorem to be

d = − 1
4 (2χ(X) + 3 sign(X)) + 1

4c1(L) · c1(L).(1.9)

Here, χ is the Euler characteristic of X and sign(X) is the signature. Also, the
notation u·v for classes u, v ∈ H2(X ;Z) denotes the evaluation of their cup product
on the fundamental class of X .

Fact 3. A choice of orientation for the line

det(H0(X ;R))⊗ det(H1(X ;R))⊗ det(H2+(X ;R))(1.10)

serves to orient M . (The orientation of a point is a choice of ±1 assigned to said
point.)

Fact 4. Fix a base point in X and let C∞0 (S1;X) denote the subset of maps which
map the base point to 1. Let M0 denote the quotient of the space of solutions to
(1.8) by the latter group. Where M is a smooth manifold, the projection M0 →M
defines a principal S1 bundle.

Fact 5. The space M is compact.

With the preceding understood, here is the definition of the Seiberg-Witten
invariant.

Definition 1.1. Let X be a compact, oriented 4-dimensional manifold with b+2 > 1

and let L ∈ Spin be a SpinC structure on X . Choose an orientation for (1.9). The
Seiberg-Witten invariant SW(L) for L is defined as follows:

(a) When d < 0 in (1.9), the invariant is defined to be zero.
(b) When d = 0 in (1.9), choose µ in (1.8) to make M a smooth manifold. Then

this M is a finite union of signed points and the Seiberg-Witten invariant is the
sum over these points of the corresponding ±1’s.

(c) When d > 0 in (1.9), choose µ in (1.8) to makeM a smooth manifold. This M
is compact and oriented so has a fundamental class. The Seiberg-Witten invariant
is obtained by pairing this fundamental class with the maximum cup product of
the first Chern class of the line bundle M0 ×S1 C.
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Note that the dimensions of M and b+2 + b1 have opposite parity; thus, the
Seiberg-Witten invariants are zero when b+2 + b1 is even.

The facts listed above then yield

Proposition 1.2. Let X be a compact, oriented, connected, dimension 4 manifold
with b+2 > 1. Then SW defines a map from Spin to Z which depends only on the
underlying smooth structure of X. That is, the value of SW(L) is independent of
the choice of metric and perturbing form µ in (1.8). It depends only on L up to

isomorphism. Furthermore, the assignment of SW to a SpinC structure is invariant
under self-diffeomorphisms of X in the following sense: if ϕ is a diffeomorphism of
X, then the value of SW on ϕ∗L is, up to sign, the same as the value of SW on L.

(c) Symplectic manifolds. A 2-form ω on an oriented 4-manifold X is symplectic
when

dω = 0 and ω ∧ ω 6= 0(1.11)

everywhere. Furthermore, the 4-form ω ∧ ω will be required to orient X . A 4-
manifold X with a symplectic form ω will be called a symplectic 4-manifold.

Every symplectic manifold has a canonical complex line bundle K called the
canonical bundle. Fix a Riemannian metric on X ; then K can be identified as the
orthogonal 2-plane bundle to the projection of ω into Λ+. (The fact that ω∧ω 6= 0
implies that this last projection is nowhere zero.) Alternately, K can be defined
by choosing an almost complex structure TX which is compatible (in the sense of
Gromov [Gr]) for ω. In this case, K is det(T 1,0X). The specification of such an
almost complex structure is equivalent to the specification of a metric on X for
which ω is self-dual. Note that when t→ ωt is a continuous, 1-parameter family of
symplectic forms on X , then the canonical bundles for (X,ω0) and (X,ω1) will be
isomorphic.

A symplectic manifold also has a canonical SpinC structure (see [T2]). Indeed,
use a metric for which ω is self-dual with length

√
2. For such a metric, the canonical

SpinC structure is characterized by the fact that its associate bundle S+ is naturally
isomorphic to I⊕K−1, where I is the trivial complex line bundle. Here, ω acts by
Clifford multiplication on the I summand with eigenvalue −2i, and it acts on K−1

summand with eigenvalue +2i. (When t→ ωt is a continuous, 1-parameter family

of symplectic forms on X , then the canonical SpinC structures for ω0 and ω1 can
be naturally identified.)

With the preceding understood, remark that the line bundle K−1 has a canonical
(up to gauge equivalence) connection A0 which is characterized as follows: If A is
a covariant derivative on K−1, then the spin covariant derivative ∇A induces a
covariant derivative on the I summand of S+ which is given by

∇A ≡
1

2

(
1 +

i

2
c+(ω)

)
∇A : C∞(I)→ C∞(I⊗ T ∗X).(1.12)

With (1.12) understood, note that A0 is characterized by the requirement that ∇A0

annihilate a non-trivial section, u0. This u0 will be taken to have norm one. Note
that

DA0u0 = 0,(1.13)

which is a consequence of the fact that dω = 0. (This is proved in [T2].)
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The defining of this canonical SpinC structure allows one to identify Spin, the
set of equivalence classes of SpinC structures on X , with the set of equivalence
classes of complex line bundles over X . (The latter is, of course, the same as

H2(X ;Z).) The SpinC structure which corresponds to a given complex line bundle
E is characterized by the fact that its bundle S+ is given by

S+ = E ⊕ (K−1 ⊗E).(1.14)

Note that Clifford multiplication by ω on S+ in (1.14) preserves the splitting with
the summand E having eigenvalue −2i.

Note that the line bundle L = det(S+) for (1.14) is K−1⊗E2. Thus, a connection
A on L is determined by the canonical connection A0 on K−1 and by the choice of
connection, a, on E. The relationship between A and a is characterized as follows:
Let α be a section of E. To avoid confusion, α · u0 will denote the corresponding
section of the E summand in S+ as given in (1.14). And, with this understood,
the spin covariant derivative (using ∇A) of α · u0 is related to the ∇a covariant
derivative of α by the formula

∇A(α · u0) = (∇aα) · u0 + α · ∇A0u0.(1.15)

(Note that ∇A0u0 is a section of the K−1 ⊗ T ∗X summand of S+ ⊗ T ∗X .)
When β is a section of the K−1 ⊗E summand in (1.14), introduce the notation

∇′Aβ ≡
1

2

(
1− i

2
c+(ω)

)
∇Aβ,(1.16)

which is a section of the (K−1 ⊗E)⊗ T ∗X summand of S+ ⊗ T ∗X .

(d) The perturbation. There is a natural 1-parameter family of choices for the
2-form µ in (1.8) on a symplectic manifold. The family is parameterized by a real
number r ≥ 0 and is given by

µ = − i · r
4
ω + P+FA0 .(1.17)

Here, P+ : Λ2T ∗X → Λ+ is the metric’s orthogonal projection onto the self-dual
forms. With this perturbation choice, the Seiberg-Witten equations read

DAψ = 0 and P+FA = P+FA0 + 1
4 (τ(ψ ⊗ ψ∗)− i · r · ω).(1.18)

When analyzing (1.18), it proves useful to write S+ as in (1.14) and to write the
section ψ as

ψ = r1/2 · (αu0 + β),(1.19)

where α is a section of E and where β is a section of the K−1 ⊗ E summand in
(1.14). Then, with ψ given as in (1.19), the Seiberg-Witten equations in (1.18) are
equivalent to

σ(u0 ⊗∇aα) +DAβ = 0,

P+Fa = − i
8
r · (1− |α|2 + |β|2) · ω +

i · r
4

(αβ∗ + α∗β).
(1.20)

Here, αβ∗ and α∗β, being respective sections of K and K−1, are identified as
summands of Λ+ ⊗ C.
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(e) The main theorem. With the preceding equations understood, here is the
principal result in this paper:

Theorem 1.3. Let X be a compact 4-manifold with symplectic form ω. Fix a
Riemannian metric which makes the symplectic form anti-self-dual and of length√

2. Fix a complex line bundle E → X. Let {Ωi ⊂ X} be a finite (maybe empty)
set of closed sets. Assume that there exists an unbounded sequence of values for
the parameter r in (1.20) for which (1.20) has a solution for the SpinC structure
in (1.14). And, suppose that for each of these r values, there is such a solution
with Ωi ∩α−1(0) 6= ∅ for all i. Then there exists a smooth, compact, complex (not
necessarily connected) curve Σ and a pseudo-holomorphic map ϕ : Σ → X with
ϕ∗[Σ] equal to the Poincaré dual to c1(E) and with Ωi ∩ image(ϕ) 6= ∅ for all i.
(The almost complex structure on TX is defined by the metric and the symplectic
form.)

(Remark that a map from a complex curve into X is called pseudo-holomorphic
when its differential everywhere intertwines the action of the complex structure on
the curve with the action of J . Thus, the image of a pseudo-holomorphic embedding
is a pseudo-holomorphic submanifold.)

Let {rn} be an unbounded sequence of r values as in Theorem 1.3, and let
{(An, αn, βn)} be the corresponding sequence of solutions. The proof of Theorem
1.3 will show that the sequence of subsets {α−1

n (0)} ⊂ X converges to ϕ(Σ) in the
following sense: There is a subsequence with the property that

lim
n→∞

sup
x∈ϕ(Σ)

dist(x, α−1
n (0)) + sup

x∈α−1
n (0)

dist(x, ϕ(Σ)) = 0.(1.21)

Here is the strategy for the proof of Theorem 1.3: Take a sequence {rn} of r
values for Theorem 1.3 with the corresponding sequence (An, (αn, βn)) of solutions
to (1.20). Now consider the sequence { i

2πFAn} as a sequence of currents Fn, where

Fn(µ) ≡
∫

i

2π
FAn ∧ µ.(1.22)

(A current is an element in the dual space to the Frechet space of smooth sections of
Λ∗T ∗X .) Various properties of this sequence will be established with the ultimate
goal being an assertion to the effect that the sequence {Fn} has a subsequence
which converges to a current, F , whose support is a closed set C with finite 2-
dimensional Hausdorff measure. (A current has support on a set C if it annihilates
all forms with compact support in the complement of C.) The current F will be
used to define an integer valued, homotopy invariant (called I) of a certain class
of maps from 2-dimensional disks into X . The allowed maps are those for which
C intersects the closure of the image of the disk only in the image of the disk.
(This I is defined by taking the limit of the integrals of { i

2πFAn} over the disk in
question.) A crucial point is that this homotopy invariant assigns a positive integer
to any symplectically embedded disk with non-trivial intersection, but compactly
supported (in the preceding sense) intersection with C. These properties of the
current F are established in Section 5.

Section 6 continues the proof of Theorem 1.3 by exploiting the positivity of I
on symplectic disks to prove that C must be the image of a complex curve by a
pseudo-holomorphic map. It is pertinent to consider here the following classical
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analog:

Let C ⊂ C2 be a codimension 2 submanifold with positive local

intersection with all complex lines. Then C is complex analytic.
(1.23)

(See the introduction to Section 6 for a proof.) The results in Section 6 make
no specific references to the Seiberg-Witten equations per se. The Seiberg-Witten
equations enter only Section 5 to give the current F .

The results in Section 6 are reminiscent of the discussion in Section 5 of [Ki].
As for Sections 2–4, they provide the essential a priori estimates on solutions to

(1.20) for use in Section 5.

(f) An outline of the remaining sections. As remarked, Sections 2–4 provide
the key analytic estimates for the proof of Theorem 1.3. Here are their key estimates
with the relevant reference to the text:

(1) |α| ≤ 1 +
z

r
(Proposition 2.1).

(2) |β|2 ≤ z

r
(1− |α|2) +

z′

r3
(Proposition 2.3).

(3) |P±Fa| ≤
r

4
√

2
(1− |α|2) + z (Propositions 2.4 and 3.4).

(4) |∇aα|2 ≤ z · r · (1− |α|2) + z′ (Proposition 2.8).

(5) |∇′Aβ|2 ≤ z · (1− |α|2) +
z′

r
(Proposition 2.8).

(6) If q is one of {r3/2β, r · (1− |α|2), Fa, r
1/2∇aα, r · ∇′Aβ}, then

|q(x)| ≤ z · r · exp

(
1

z
r1/2 dist(x, α−1(0))

)
(Proposition 4.4).

(1.24)

Here, z and z′ are constants which are determined solely by c1(E) and the Rie-
mannian metric.

Also key to the proof is Proposition 3.1 which provides a “monotonicity formula”
for the function e on (0, 1) × X whose value at a pair (s, x) is defined to be the
integral over the ball of radius s with center x of r4 |1−|α|2|. Proposition 3.1 asserts
(in part) that

(1) e(s, x) ≤ z · s2,

(2) e(s, x) ≥ 1

z
s2 if s ≥ r−1/2 and α(x) = 0.

(1.25)

The estimates in (1.24) and (1.25) are used in Section 4 to provide a description
of α−1(0) at length scales which are O(r−1/2). The key observation here is that for
larger r, α−1(0) is very close to being pseudo-holomorphic at these length scales.
Proposition 4.2 makes this statement precise. Note that Proposition 4.1 describes
the solutions to the Seiberg-Witten equations on C2. (The story here is not as
simple as one might initially imagine.)

As remarked above, Section 5 uses the preceding estimates to prove various
statements about a limit F of the distributions in (1.22). In particular, (1.25) is
used to prove that the support of F has finite 2-dimensional Hausdorff measure.
And, (1.24) is used to prove that F is a distribution of type 1-1 which has positive,
integer pairing with any pseudo-holomorphic disk which intersects F ’s support in
its interior.
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As remarked also above, Section 6 uses the facts about F from Section 5 to prove
that the support of F is the image of a complex curve by a pseudo-holomorphic
map. Section 6 completes the proof of Theorem 1.3.

Section 7 starts with Proposition 7.1. This proposition asserts a genericity result
which implies that the pseudo-holomorphic maps in Theorem 1.3 are embeddings
if the metric is suitably generic. After proving Proposition 7.1, Section 7 goes on
to discuss the applications to Theorems 0.1–0.3 of the introduction.

2. Estimates

The purpose of this section is to derive some very useful estimates for solutions
to (1.20) when the SpinC structure has its S+ bundle as in (1.14). For the most
part, these estimates will come through applications of the maximum principle.
(The reader can find baby versions of most of the estimates below in [T3].)

(a) Apriori bounds on (α, β). The starting point for the bounds on α and β
is the equation DAψ = 0. Here, ψ = r1/2(αu0 + β). This last equation implies
that D2

Aψ = 0 too. It is the latter equation which is useful. After commuting
derivatives, it reads

∇∗A∇Aψ +
R

4
ψ +

1

2
· c+(P+FA)ψ = 0.(2.1)

(Here, ∇∗A is the formal L2 adjoint of ∇A.)
The first application of (2.1) bounds (|α|2 + |β|2) with the analog of an argument

from [KM1].

Proposition 2.1. There is a constant z which depends only on the Riemannian
metric and which has the following significance: Suppose that the SpinC structure
is given by (1.14), and suppose that (A, (α, β)) solve (1.20) for some r ≥ 0. Then

|α|2 + |β|2 ≤ (1 + z · r−1).

Proof of Proposition 2.1. To begin, take the inner product of (2.1) with ψ. After
employing (1.20), the result reads

1

2
d∗d|ψ|2 + |∇Aψ|2 +

1

4
|ψ|2(|ψ|2 − r) − z1 · |ψ|2 ≤ 0.(2.2)

(Here, d∗ is the formal L2 adjoint of the exterior derivative d.) In (2.2), z1 is a
constant which depends on the Riemannian metric. It follows from (2.2) and the
maximum principle that |ψ|2 can have no local maxima where |ψ|2 > r+4z1. Since
X is assumed compact, the lemma follows.

(b) Separate equations for α and for β. To progress further, it is necessary
to project (2.1) onto the E summand of S+ and also onto the K−1 ⊗E summand
of S+. To consider the projection of (2.1) onto the E summand, take the inner
product (in S+) of both sides of (2.1) with αu0. After an appeal to (1.20) and some
simple manipulations, one finds the following equation for |α|2:

(2.3)
1

2
d∗d|α|2 + |∇aα|2 +

r

4
|α|2(|α|2 − 1 + |β|2)

+ Re〈αu0, b · ∇Aβ〉+ Re〈αu0, qβ〉 = 0.

Here, b and q are defined from∇ω; in particular, neither depends on either (A, (α, β))
nor r. (Both b and q vanish when X is a complex surface and ω is the Kähler form;
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up to some multiple, b defines the torsion tensor for the almost complex structure
and q is obtained from derivatives of b.)

To consider the projection of (2.1) onto the K−1 ⊗E summand of S+, take the
inner product (in S+) of (2.1) with β. After an appeal to (1.20) and some simple
manipulations, a differential inequality for |β|2 appears:

1

2
d∗d|β|2 + |∇Aβ|2 +

r

4
|β|2(|β|2 + 1 + |α|2)− z1|β|2 ≤ z2|β| |∇aα|.(2.4)

Here, z1 and z2 are constants which depend solely on the form ω and the Riemannian
metric. (In particular, they are independent of the solution (A, (α, β)) and of the
parameter r.)

The lemma below turns out to be key to essentially all of the maximum principle
applications in the remainder of this section:

Lemma 2.2. There are constants κ1, κ2, κ3 ≥ 1 which depend only on the Rie-
mannian metric and which have the following significance: Let the SpinC struc-
ture be given by (1.14), and let (A, (α, β)) solve (1.20) for some r ≥ κ1. Let
ζ ∈ (0, r

2κ1κ2
) and δ ≥ κ3. Set

u ≡ (1− |α|2)− ζ|β|2 +
δ

ζr
.(2.5)

Then

1

2
d∗du+

r

4
|α|2u ≥

(
1− ζ · κ1

r

)
|∇aα|2 +

ζr

8
|β|2 +

ζ

2
|∇′Aβ|2 +

δ

8ζ
|α|2.(2.6)

Proof of Lemma 2.2. It follows from (2.4) (with the help of the triangle inequality)
that the function |β|2 obeys the following differential inequality when r > 16z1 with
z1 as in (2.4):

1

2
d∗d|β|2 +

r

4
|α|2|β|2 ≤ −r

8
|β|2 − |∇Aβ|2 +

z3

r
|∇aα|2,(2.7)

where z3 is a constant which is independent of (A, (α, β)) and r.
Now, with ρ > 0 a given constant, introduce the function

w ≡ 1− |α|2 +
ρ

r
.(2.8)

Equation (2.3) implies the following equality for w:

1

2
d∗dw +

r

4
|α|2w

= |∇aα|2 +
r

4
|α|2|β|2 +

ρ

4
|α|2 + Re〈αu0, b · ∇′Aβ〉+ Re〈αu0, qβ〉.

(2.9)

And, this last equation implies that

1

2
d∗dw +

r

4
|α|2w ≥ |∇aα|2 +

r

4
|α|2|β|2 − z4

ρ
(|∇′Aβ|2 + |β|2).(2.10)

Here, z4 depends only on the sup norm of b and q.

Lemma 2.2 follows directly from (2.7) and (2.10).
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(c) Pointwise estimates on β. The first application of Lemma 2.2 is the following
pointwise estimate for β:

Proposition 2.3. There are constants z and z′ which depend only on the Rie-
mannian metric and on ω and which have the following significance: Let the SpinC

structure be given by (1.14), and suppose that (A, (α, β)) solve (1.20) for some
r ≥ 0. Then

|β|2 ≤ z

r

(
1− |α|2 +

z′

r2

)
.(2.11)

Proof of Proposition 2.3. Take ζ ≡ r
2κ1κ2

and take δ ≡ κ3 in Lemma 2.2. With

these choices, 1
2d
∗du + r

4 |α|2u ≥ 0, and the maximum principle implies that u
cannot have a negative minimum. Thus, u ≥ 0 and the lemma follows.

(d) Pointwise estimates on curvature. The curvature Fa of the connection a
on E can be bounded using (1.20). The bound for P+Fa follows by inspection:

|P+Fa| =
r

4
√

2
((1− |α|2)2 + 2|β|2(1 + |α|2) + |β|4)1/2.(2.12)

The bound on P−Fa is harder to come by; but here it is:

Proposition 2.4. Fix a complex line bundle E → X. There are constants z and
z′ which are determined by c1(E) and the Riemannian metric and which have the
following significance: Let E be a complex line bundle on X. Let r ≥ 1, and suppose
that (A, (α, β)) is a solution to (1.20) for the SpinC structure with S+ as in (1.14).
Then

|P±Fa| ≤
r

4
√

2

(
1 +

z

r1/2

)
· (1− |α|2) + z′.(2.13)

The estimate for P+FA follows from Proposition 2.3 and (2.12). The proof of
this proposition for P−FA is a five step affair which occupies the remainder of this
subsection.

Step 1. The first step in the proof derives a 2nd order differential inequality for
|P−Fa| which allows for applications of the maximum principle. To begin, note
first that dP−Fa = −dP+Fa because of the Bianchi identity. Therefore,

P−d
∗d(P−Fa) = P−d

∗d(P+Fa).(2.14)

Use (1.20) for the right side of (2.14) and use a standard Bochner-Weitzenböck
formula for the left side in order to rewrite (2.14) as the following equation for
µ ≡ −i · P−Fa:

1

2
∇∗∇µ+Rµ = −P−d∗d

{
−r

8
(1− |α|2 + |β|2) · ω +

r

4
(αβ∗ + α∗β)

}
.(2.15)

Here, R is a certain endomorphism of Λ− which is constructed from the scalar
curvature and anti-self-dual Weyl curvature of the Riemannian metric. (See, e.g.,
Appendix C in [FU].)

To put (2.15) into a useful form, it is necessary to rewrite the right side. To
begin, use the first equation in (1.20) to derive

d∗d
(r

8
(1− |α|2 + |β|2) · ω − r

4
(αβ∗ + α∗β)

)
= − ir

8
(α∇aα∗ − α∗∇aα+ β∇′Aβ∗ − β∗∇′Aβ − αβ∗k + α∗βk∗),

(2.16)
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where k is a section of K−1 ⊗ T ∗X which is defined from the covariant derivatives
of ω. (To be precise, identify K−1 in the standard manner as a summand in the
canonical spin bundle’s S+ (take E trivial in (1.14))). With this understood, then
k ≡ i

2∇ω · u0.) Then, taking the exterior derivative of both sides of (2.16) gives

d∗d
(r

8
(1− |α|2 + |β|2) · ω − r

4
(αβ∗ + α∗β)

)
= +

r

4
iFa(|α|2 + |β|2) +

ir

4
(∇aα∗ ∧∇aα+∇′Aβ∗ ∧∇′Aβ)

− ir

8
d(αβ∗k − α∗βk∗) +

r

4
iκ · |β|2.

(2.17)

Here, κ + Fa is the curvature of the covariant derivative ∇′A on the line bundle
K−1 ⊗E. Thus, κ is independent of (A, (α, β)) and r.

Now substitute the right side of (2.17) into the right side of (2.15) to derive the
following equation for µ ≡ −iP−Fa:

1

2
∇∗∇µ+

r

4
(|α|2 + |β|2)µ+Rµ =

ir

4
P−(∇aα∗ ∧∇aα+∇′Aβ∗ ∧∇′Aβ)

− ir

8
P−d(αβ∗k − α∗βk∗) +

r

4
iκ · |β|2.

(2.18)

Let s ≡ |P−Fa| (which is |µ|). This function s obeys the following differential
inequality:

1

2
d∗ds+

r

4
(|α|2 + |β|2)s ≤ |R|s+

r

4
√

2
(|∇aα|2 + |∇′Aβ|2)

+ z · r(|α| |β| + |α| |∇′Aβ|+ |β| · |∇aα|+ |β|2).

(2.19)

Here, z is a constant which is independent of (A, (α, β)) and r.

Step 2. This step adds and subtracts various terms (of known size) from s in order
to obtain a differential inequality as in (2.19) with fewer terms on the right side.
The result is summarized by

Lemma 2.5. There are positive constants κ1, κ2, κ3 which depend only on the Rie-
mannian metric and on ω and which have the following significance: Let the SpinC

structure be given by (1.14), and suppose that (A, (α, β)) solve (1.20) for some
r ≥ κ1. Then, the functions

q0 ≡
r

4
√

2

(
1 +

1

r
κ1

)
· (1− |α|2)− κ2 · r · |β|2 + κ3(2.20)

and s = |P−Fa| obey

1

2
d∗d(s− q0) +

r

4
|α|2(s− q0) ≤ |R|s.(2.21)

Proof of Lemma 2.5. This lemma is a direct consequence of Lemma 2.2 and (2.19).

Step 3. This step bounds s − q0 from above in terms of a certain non-negative
function q. The function q satisfies the differential equation

1

2
d∗dq +

r

4
|α|2q = |R|s.(2.22)

Standard existence theorems find q as long as α doesn’t vanish identically. The
vanishing of α is precluded by
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Lemma 2.6. There is a constant z which is determined by the Riemannian metric
and which has the following significance: Fix a complex line bundle E → X. For
r ≥ 0, let (A, (α, β)) be a solution to (1.20) for the SpinC structure in (1.14). Then

2π[ω] · c1(E)− z

r
≤ r

4

∫
X

|1− |α|2| ≤ 2π[ω] · c1(E) +
z

r
.

Here c1(E) is the first Chern class of the bundle E, and [ω] is the cohomology class
of the symplectic form ω. Also, · signifies the cup-product pairing on cohomology.

Proof of Lemma 2.6. The cup product pairing c1(E) · [ω] is obtained by integrating
over X the 4-form i

2πFa ∧ ω. This is equal to r
8π times the integral over ω of

(1− |α|2 + |β|2) because of (1.20). With this understood, the lemma then follows
using Propositions 2.1 and 2.3.

With this lemma understood, it follows that for r sufficiently large, (2.22) has
a unique solution q, and the maximum principle (with (2.21) and (2.22)) implies
that s− q0 − q cannot have a positive maximum. That is,

|P−Fa| ≤
r

4
√

2

(
1 +

1

r
κ1

)
· (1− |α|2) + κ4 + q(2.23)

everywhere on X . Here, κ4 is a constant which is independent of r and of the
solution (A, (α, β)).

Step 4. This step completes the proof of Proposition 2.4 under the assumption
(Lemma 2.7, below) of a specific bound on the solution q to (2.24). Here is Lemma
2.7:

Lemma 2.7. Fix a complex line bundle E → X. There are constants z and z′ that
are determined by c1(E) and by the Riemannian metric on X and which have the
following significance: Let r ≥ z, and let (A, (α, β)) be a solution to (1.20). Let q
satisfy (2.21). Then

q ≤ z · sup(|P−Fa|)
(

(1− |α|2)

r1/2
+
z′

r

)
.(2.24)

This lemma is proved below. With the lemma given, here is how to complete
the proof of Proposition 2.4: First, substitute (2.24) into (2.23) and observe that
for r > z (here, z depends only on c1(E) and the metric), the resulting equation
bounds |P−Fa| uniformly by a multiple of r. (The multiple is r

4
√

2
(1+O(r−1/2)) for

r large.) Then, insert this bound for |P−Fa| back into (2.24) and insert the latter
into (2.23) to obtain the claimed estimates in Proposition 2.4.

Step 5. This step contains the

Proof of Lemma 2.7. To begin, use R to denote the supremum over X of |R| and
then introduce

q1 = q − 4 · R
r

sup |P−Fa|.(2.25)

Then q1 obeys the differential inequality

1

2
d∗dq1 +

r

4
|α|2q1 ≤ R · sup(|P−Fa|) · (1− |α|2).(2.26)

The function q1 will be estimated using the maximum principle as applied to
q1 − v, where v is a function which will now be specified. The construction of the
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function v occupies the following digression: To start the digression, remark that
Propositions 2.1 and 2.3 plus Lemma 2.2 can be used to find a constant δ > 0
(independent of r and (A, (α, β)) for which the function

v1 ≡ 1− |α|2 +
δ

r
− |β|2(2.27)

has the following properties when r ≥ κ1:

(1) v1 ≥
δ

2r
.

(2) v1 ≥ 1− |α|2.

(3)
1

2
d∗dv1 +

r

4
|α|2v1 ≥ 0.

(2.28)

With (2.28) understood, introduce ε ≡ r−1/2 and note that v2 ≡ (v1)1−ε obeys
the following differential inequality:

1

2
d∗dv2 +

r

4
|α|2v2 ≥

√
r

4
|α|2v2.(2.29)

Also, notice that

v2 ≥ 1− |α|2,(2.30)

because of (2.28)(2) and because 1− |α|2 ≤ 1. Thus, (2.29) and (2.30) imply that

1

2
d∗dv2 +

r

4
|α|2v2 ≥

√
r

4
|α|2 · (1− |α|2).(2.31)

With v2 understood, the function v is given by

v ≡ (8R · r−1/2 · sup(|P−Fa|) + 4 · sup(q1)) · v2.(2.32)

End the digression.
Here are the relevant properties of v: First, v ≥ q1 at points where |α|2 < 1/2;

and second, where |α|2 ≥ 1/2, the function v obeys the differential inequality

1

2
d∗dv +

r

4
|α|2v ≥ R · sup(|P−Fa|) · (1− |α|2).(2.33)

Thus, the maximum principle applied to q1 − v where |α|2 ≥ 1/2 proves (using
(2.26) and (2.33)) that

q1 ≤ (8R · r−1/2 · sup(|P−Fa|) + 4 · sup(q1)) · v2(2.34)

everywhere if r is sufficiently large. (This bound on r is independent of the data
(A, (α, β)), although it may depend on c1(E).)

Thus, (2.34) describes q1 everywhere once the supremum of q1 is estimated. With
Lemma 2.6 in hand, the supremum of q1 can be estimated directly from (2.26) using
the standard properties of the Green’s function for the Laplacian. In particular,

q1 ≤
z ·R · sup(|P−Fa)

r1/2
.(2.35)

Here, z is independent of r and of (A, (α, β)) but z does depend on c1(E). (Here is
a sketch of the derivation of (2.35): To start, one can drop the second term on the
left side of (2.26). Then, use the known singular behavior of the Green’s function
for d∗d to bound q1 from above by z · sup(|P−Fa|) · (ρ−2‖1− |α|2‖L1 + ρ2), where
ρ > 0 is arbitrary. The constant z here depends only on the Riemannian metric.
Since the L1 norm of (1 − |α|2) is bounded from above by a multiple of r−1 from
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Propositions 2.1 and 2.3 plus Lemma 2.6, the preceding bound is minimized by
taking ρ = r−1/4. This gives the bound in (2.35).)

This estimate from (2.35) should now be plugged back into (2.34) and (2.25) to
give a pointwise bound for q. Note that the resulting expression is that which is
claimed in Lemma 2.7 except that the function (1−|α|2) in (2.24) has been replaced
by the function v2. However, v2 obeys

v2 ≤ 2 · (1− |α|2) +
z0

r
,(2.36)

which follows from (2.28)(1). Thus the estimate in Lemma 2.7 is proved.

(e) Estimates on the covariant derivatives of (α, β). The covariant derivatives
of α and β are bounded by

Proposition 2.8. Let E → X be a complex line bundle. There are constants z and
z′ that are determined by c1(E) and by the Riemannian metric on X and which
have the following significance: Let r ≥ 1 and suppose that (A, (α, β)) is a solution

to (1.20) for the SpinC structure with S+ as in (1.14). Then

|∇aα|2 + r · |∇′Aβ|2 ≤ z′ · r(1− |α|2) + z.(2.37)

The remainder of this subsection is devoted to the

Proof of Proposition 2.8. The starting point is (2.1).

Step 1. Project (2.1) onto the E summand in (1.14) and then act on both sides of
the resulting equation by ∇a. Commute covariant derivatives where necessary to
get an equation of the form∇∗a∇a(∇aα) = something. Then take the inner product
of the resulting equation with ∇aα to obtain the following differential inequality:

1

2
d∗d|∇aα|2 + |∇a∇aα|2 +

r

4
|α|2|∇aα|2

≤ z · (r · (1− |α|2) + 1)|∇aα|2

+ z · |∇aα|((1 + r|β|) · |∇′Aβ|+ (r|α|2 + 1)|β|+ |∇′A∇′Aβ|).

(2.38)

Proposition 2.4 was used in deriving (2.38) in order to bound terms where Fa
appears from commutators of covariant derivatives. The commuting of covariant
derivatives also produces a term with d∗Fa; the latter is expressed in terms of α, β
and their covariant derivatives using (2.16) and the fact that d∗Fa = 2d(P+Fa).
Furthermore, certain manifestly positive terms were discarded from the left-hand
side of (2.38) (i.e. multiples of |d|α|2|2 and |β|2|∇aα|2). In (2.38), the constant z
is independent of r and of the solution (A, (α, β)). An application of the trian-
gle inequality (and Propositions 2.1 and 2.3) to the right side of (2.38) gives the
following, less cumbersome inequality:

1

2
d∗d|∇aα|2 + |∇a∇aα|2 +

r

4
|α|2|∇aα|2

≤ z1 · r · |∇aα|2 + z1 · r|β|2 + z1 · |∇′Aβ|2 +
1

r
|∇′A∇′Aβ|2.

(2.39)

Here, z1 is a constant which is independent of r and of (A, (α, β)).
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Step 2. Now project (2.1) onto the K−1 ⊗ E summand in (1.14) and then act on
both sides of the resulting equation by ∇′A. Then take the inner product of the
resulting equation with ∇′Aβ to obtain the following differential inequality:

1

2
d∗d|∇′Aβ|2 + |∇′A∇′Aβ|2 +

r

4
|α|2|∇′Aβ|2

≤ z2 · (r · (1− |α|2) + 1) · |∇′Aβ|2

+ z2 · |∇′Aβ|((1 + r|α| |β|) · |∇aα|+ r|α| |β|2 + |∇a∇aα|).

(2.40)

In deriving (2.40), certain manifestly positive terms were discarded from the left
side (i.e. multiples of |d|β|2|2 and |β|2|∇′Aβ|2). And, Proposition 2.4 and also (2.16)
were used to bound the terms which arise from commuting covariant derivatives. As
usual, in (2.40), the constant z is independent of r and (A, (α, β)). An application
of the triangle inequality (and Propositions 2.1 and 2.3) to the right side of (2.40)
gives the following inequality:

1

2
d∗d|∇′Aβ|2 + |∇′A∇′Aβ|2 +

r

4
|α|2|∇′Aβ|2

≤ z3 · r · |∇′aβ|2 + z3|β|2 + z3 · |∇aα|2 +
1

r
|∇a∇aα|2.

(2.41)

Here, as usual, z3 is independent of r and (A, (α, β)).

Step 3. This third step consists of adding (2.39) to r times (2.41). The result (after
a straightforward rearrangement, and after the discarding of certain manifestly
positive terms from the left side) is the following inequality for y ≡ (|∇aα|2 +
r|∇′Aβ|2):

1

2
d∗dy +

r

4
|α|2y ≤ z4 · r · (|∇aα|2 + r|∇′Aβ|2) + z4 · r · |β|2.(2.42)

Here, z4 is a new constant which is independent of r and (A, (α, β)).
With (2.42) understood, introduce the function u from (2.5) using the values

ζ ≡ r
κ1κ2

and with δ ≡ 1. It then follows from (2.6) that there exists a constant z5

which is independent of both r and (A, (α, β)), and is such that

1

2
d∗d(y − z5 · r · u) +

r

4
|α|2(y − z5 · r · u) ≤ 0.(2.43)

Hence, the maximum principle implies that y ≤ z5 · r · u which is the assertion of
Proposition 2.8.

3. The monotonicity formula

Fix a SpinC structure as in (1.14) and suppose that (A, (α, β)) is a solution to
(1.20) for some large r. The purpose of this section is to derive a lower bound for
the amount of “energy” of the α part of the spinor in a ball when α is zero at the
ball’s center. This lower bound will be seen to grow as the square of the radius of
the ball. This growth rate estimate plays a key role in the subsequent construction
of pseudo-holomorphic curves from sequences of α zero sets.

The growth rate estimate is stated in Proposition 3.1, below. The key to proving
Proposition 3.1 is the formula in Proposition 3.2 for the rate of change of the energy
in a ball as a function of the radius of the ball. (Such formulae are sometimes called
“monotonicity estimates”.)



862 C. H. TAUBES

Subsections 3a-c are concerned with Propositions 3.1 and 3.2 and their proofs.
The last subsection below offers a refinement (Proposition 3.4) of the estimate in
Proposition 2.4 for Fa.

(a) Local energy. Fix a complex line bundle E → X . Then, fix r > 0 and a

solution (A, (α, β)) of (1.20) using the SpinC structure in (1.14). Let U ⊂ X be an
open set. Define the energy EU ≡ EU (α) over U to be equal to the integral over B
of

EU ≡
r

4

∫
U

|1− |α|2|.(3.1)

Lemma 2.6 asserts that this energy cannot be too big.

(b) Monotonicity. Fix the SpinC structure on X as in (1.14). Fix a point x ∈ X
and let B denote the geodesic ball of radius s > 0 with center x. Let r > 0 be
given, as well as a solution (A, (α, β)) to (1.20). The following proposition details
the behavior of EB as a function of the radius s of B. It has two parts. The first
part gives upper bounds for the size of EB; and the second part gives lower bounds
under the assumption that |α(x)| is small.

Proposition 3.1. Fix a complex line bundle E → X. There is a constant z ≥ 1
that is determined by c1(E) and the Riemannian metric and which has the following

significance: Fix r ≥ z as well as a solution (A, (α, β)) to (1.20) for the SpinC

structure in (1.14). Let B ⊂ X be a geodesic ball with center x. Let s denote the
radius of B and require 1

z ≥ s ≥
1

2r1/2 . Then

(1) EB ≤ z · s2.
(2) If |α(x)| < 1/2, then

EB ≥
1

z + 1
s2.(3.2)

The strategy for proving Proposition 3.1 is to derive an inequality involving EB
and d

dsEB which can be integrated to yield (3.2). This inequality is stated as

Proposition 3.2. Fix a complex line bundle E → X. There is a constant z ≥ 1
that is determined by c1(E) and the Riemannian metric and which has the following

significance: Specify r ≥ z as well as a solution (A, (α, β)) to (1.20) for the SpinC

structure in (1.14). Let B ⊂ X be a geodesic ball with center x which is such that
α(x) < 1

2 . Let s denote the radius of B and require that s ≥ 1
r1/2 but s < 1

z . Then

EB ≤
s

2
(1 + zs) ·

(
1 +

z

r1/2

) d

ds
EB + z · s4.(3.3)

The remainder of this subsection proves Proposition 3.1 under the assumption
of the validity of (3.3). The next subsection contains the derivation of (3.3).

Proof of Proposition 3.1. Before beginning, it proves useful to make a convention
concerning constants which appear in the formulae below: Any constant which is
labeled by z (with or without a numerical subscript, such as z0; and with or without
a prime, such as z′) should be assumed to be defined independent of the parameter
r and of the data (A, (α, β)). Unless stated to the contrary, such constants should
be assumed to depend only on c1(E), the Riemannian metric and the symplectic
form ω.

There are three steps to the proof of Proposition 3.1.
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Step 1. This step integrates (3.3). For this purpose, let

f(s) ≡ −2 ·
(

1 +
z

r1/2

)−1

· ln
(

s

(1 + zs)

)
.(3.4)

With f understood, then (3.4) reads

d

ds
(efEB) ≥ −z · s3 · ef .(3.5)

This last equation can be integrated to read

EB|s ≥
1

z′
s2

s2
0

(EB |s0 − z′ · s2
0s

2).(3.6)

Here, s0 ≥ r−1/2. Note that in deriving the right side in (3.6), use has been made
of the fact that as r gets large, the function r−1/2 ln(r) tends uniformly to zero. To
be more precise here, (3.6) uses the fact that

1

z1s2
≤ ef ≤ z1

s2
,(3.7)

where z1 is independent of r and s as long as r−1/2 < s < ρ0/100.
To complete Step 2 of the proof, suppose that s0 has been given with r−1/2 <

s0 < ρ0/100 and with

EB|s=s0 ≥ ζ · s2
0.(3.8)

Under this assumption, (3.6) implies that

EB|s ≥
ζs2

z′′
when

(
ζ

2z′

)1/2

≥ s ≥ s0.(3.9)

Step 2. This step proves assertion (1) by remarking that EX is uniformly bounded
from below by Lemma 2.6, but also EX ≥ EB|s=ρ0/100. This last quantity is esti-
mated from below by (3.9), and so Lemma 2.6 gives an upper bound for ζ to prove
assertion (1) of Proposition 3.1.

Step 3. This step bounds EB from below when s = s0 ≡ r−1/2 and |α|(x) < 1/2.
Here is the bound: When s0 = r−1/2, then

EB|s=s0 >
1

z · r .(3.10)

Given this bound, assertion (2) of Proposition 3.1 follows from (3.9). To prove
(3.10), note that the assumption that |α(x)| < 1/2 and then Proposition 2.8 imply
that |α(y)| < 3/4 when dist(y, x) < 1

z1·r1/2 . With this understood, it follows that

(3.1) is at least

r

100
×
(

Volume of the ball of radius
1

z1 · r1/2

)
(3.11)

when s = r−1/2.
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(c) Proof of Proposition 3.2. First, use the same convention with constants
labeled by z as in the proof of Proposition 3.1.

The proof of Proposition 3.2 requires four steps. But, the key to the proof is an
integration by parts formula which is derived in Step 1. The integration by parts
formula is then reinterpreted in the subsequent steps.

Step 1. The derivation of the integration by parts formula starts with the fact that
the symplectic form ω is exact in B and so can be written ω = dθ where θ is a
smooth 1-form in B. Thus, with (3.14), one has∫

B

ω ∧ i · Fa =

∫
∂B

θ ∧ i · Fa.(3.12)

Step 2. This step rewrites the left side of (3.12) so as to produce a bound on EB.
The point here is that the integrand on the left side of (3.12) can be related to the
integrand in (3.1) for EB. Indeed, using the curvature equation in (1.20), one finds
the second term in the integrand on the left side of (3.12) equal to

r

4
(1− |α|2 + |β|2).(3.13)

Because (2.11) implies the lower bound

−z1

r2
≤ (1− |α|2),(3.14)

the expression in (3.13) is no smaller than

r

4
|1− |α|2| − z2

r
.(3.15)

Insert the bound from (3.15) into the left side of (3.12) to arrive, finally, at the
inequality

EB −
z3 · s4

r
≤
∫
∂B

θ ∧ i · Fa.(3.16)

Notice that the inequality in (3.16) bounds EB using an integral over ∂B.

Step 3. This step comprises a three-part digression concerning the possibilities for
the 1-form θ in (3.16).

For part 1 of the digression, recall that there are no local invariants for symplectic
forms. This means that there exists some number ρ > 0 such that there is a
“symplectic” coordinate system on the radius ρ ball about any point in X . Such
a coordinate system is characterized by the fact that it pulls ω back to R4 as the
standard symplectic form

ω0 = dy1 ∧ dy2 + dy3 ∧ dy4.(3.17)

Here, (y1, y2, y3, y4) are standard Euclidean coordinates.
Now, there is some flexibility in choosing a symplectic coordinate system; and,

in particular, one can choose the symplectic coordinate system so that the metric,
g, on X pulls back to R4 to obey

(1) |g − gE | ≤ z0 · |y|.
(2) |∂g| ≤ z0.

(3.18)

Here, gE denotes the Euclidean metric, and ∂g denotes the tensor of partial deriva-
tives (with respect to the Euclidean coordinates) of the components of the metric
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g. The constant z0 in (3.18) can be taken to be independent of the given point on
X .

For part 2 of the digression, remark that the form ω0 on R4 can be written as
ω0 = dθ0, where

θ0 = 1
2 (x1 dx2 − x2 dx1 + x3 dx4 − x4 dx3).(3.19)

This 1-form θ0 has some useful properties which are described below:

Lemma 3.3. Let s > 0 and let Ss denote the 3-sphere in R4 of radius s and center
0. Endow Ss with the induced metric from its embedding ι : Ss → R4 and then let
∗ : T ∗Ss → Λ2T ∗Ss denote the induced metric’s Hodge star. Then

|ι∗θ0| =
s

2
.

Proof of Lemma 3.3. This is an exercise.

For part 3 of the digression, note that one can find (using part 1 of the digression)
a number ρ0 > 0, which depends only on the metric on X and on ω and which has
the following significance: If s < ρ0/100, then the ball B of radius s and center x
lies in the symplectic coordinate chart about x. Use these coordinates to think of
B as a subset in R4. Note that B is a ball as defined with the metric g, but it is
not necessarily a Euclidean ball.

In any event, let ι : ∂B → R4 denote the inclusion. Then, the form θ which
appears on the right side of (3.16) can be taken to be ι∗θ0. Because of (3.18) and
Lemma 3.3, this form obeys ∣∣∣ |θ| − s

2

∣∣∣ ≤ z5 · s2.(3.20)

(Because of (3.18), the norms here can be taken either with the Euclidean metric
or with the metric g.) The constant z5 in (3.20) can be taken independent of s as
long as s < ρ

100 .

Step 4. This step rewrites the right side of (3.16) in terms of the derivative d
dsEB.

To begin, observe that

|θ ∧ ι∗Fa| ≤
s

2
(1 + z4s) · (|ι∗P−Fa|+ |ι∗P+Fa|).(3.21)

Use the fact that

|ι∗P±Fa| =
1√
2
|P±Fa|,(3.22)

to invoke (2.12) and (2.13) in order to simplify the right side of (3.21) so that the
result reads

|θ ∧ ι∗Fa| ≤
s

2
(1 + z5s) ·

(
1 +

z5

r1/2

)
·
(r

4
|1− |α|2|+ z5

)
.(3.23)

Now, plug (3.23) into the right side of (3.16) to find

EB ≤
s

2
(1 + z5s) ·

(
1 +

z6

r1/2

) r
4

∫
∂B

|1− |α|2|+ z6 · s4.(3.24)

The final chapter of the story rewrites (3.24) using the observation

d

ds
EB =

r

4

∫
∂B

|1− |α|2|.(3.25)

This last identity with (3.24) gives the proposition.
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(d) A refined estimate of P−Fa. The monotonicity formula in Proposition 3.2
has an immediate application towards refining the upper bound in Proposition 2.4
for the size of P−Fa. Here is the refined bound:

Proposition 3.4. Fix a complex line bundle E → X. There is a constant z ≥ 1
that is determined by c1(E) and the Riemannian metric and which has the following
significance: Let r ≥ 1 and suppose that (A, (α, β)) is a solution to (1.20) for the

SpinC structure with S+ as in (1.14). Then

|P±Fa| ≤
r

4
√

2
(1− |α|2) + z.(3.26)

Remark that the refinement in (3.26) over the estimate in (2.13) is the absence
of the factor of r1/2. The remainder of this subsection is occupied with the

Proof of Proposition 3.4. To begin, remark that the asserted inequality for |P+Fa|
follows directly from (2.12) and Proposition 2.3. Thus, the task is to prove the
bound for |P−Fa|. Reviewing the proof of Proposition 2.4, one finds that the factor
of r1/2 in (2.13) enters through the estimate for the function q in (2.25). With
this understood, the proof of Proposition 3.4 is obtained by finding a bound for
the function q by a constant (which depends only on c1(E) and the Riemannian
metric). This gives the required bound for P−Fa via (2.23). In summary, the task
is to bound q by an r-independent constant.

To begin the task, use the fact that |P−Fa| is a priori bounded in Proposition
2.4 by some constant times r to argue that q satisfies the differential inequality

1

2
d∗dq +

r

4
|α|2q ≤ z1 · r.(3.27)

Here, z1 is determined by the Riemannian metric and by c1(E), but it is independent
of r and of (A, (α, β)). The following lemma is the key to the refined bounds for q:

Lemma 3.5. Fix a complex line bundle E → X. There is a constant z0 ≥ 1 that
is determined by c1(E) and the Riemannian metric and which has the following

significance: Let r ≥ 1 and let (A, (α, β)) be a solution to (1.20) for the SpinC

structure with S+ as in (1.14). There is a smooth function u on X which obeys
(1) |u| ≤ z0.
(2) 1

2d
∗du ≥ r where |α| < 1

2 .
(3) |d∗du| ≤ z0 · r.

This lemma is proved below. Accept its validity for now to continue with the
proof of Proposition 3.4 as follows: Take the constant z1 from (3.27) and consider
that the function q − z1 · u obeys the differential inequality

1

2
d∗d(q − z1 · u) +

r

4
|α|2(q − z1 · u) ≤ z2 · r · |α|2.(3.28)

This follows from assertions (2) and (3) of Lemma 3.5. (Here, z2 is independent of
r and of (A, (α, β)); it depends only on c1(E) and the Riemannian metric.) Next,
apply the maximum principle to the function (q− z1 ·u−4z2) to conclude that this
function is either zero or everywhere negative. Thus,

q ≤ z1 · u+ 4z2 ≤ z3,(3.29)

which is a consequence of assertion (1) of Lemma 3.5. As remarked, this bound for
q plus (2.23) yields Proposition 3.4.



SW ⇒ Gr 867

Proof of Lemma 3.5. In the proof, strictly positive constants which depend on
c1(E) and the Riemannian metric, but do not depend on r nor on (A, (α, β)) will
be denoted by z, with or without numerical subscripts. Usually, this fact will be
left unsaid.

The proof of Lemma 3.5 is divided into five steps.

Step 1. The first observation is

Lemma 3.6. Fix a complex line bundle E → X. There is a constant z1 ≥ 1 that
is determined by c1(E) and the Riemannian metric and which has the following
significance: Suppose that r ≥ z1 and that (A, (α, β)) is a solution of (1.20) with

the SpinC structure from (1.14). Fix ρ ∈ (r−1/2, ρ0/100). Then, the set V where
|α| < 1

2 can be covered by a set {Bi} of no more than z1

ρ2 balls of radius ρ whose

centers are in V . Furthermore, if B′i is the ball with the same center as Bi but with
radius ρ

2 , then the balls in the set {B′i} are disjoint.

Proof of Lemma 3.6. If B is a ball of radius 1
2ρ ≥

1
2r
−1/2 and center x ∈ V , then

according to Proposition 3.1, EB ≥ 1
z+1ρ

2. This fact with Lemma 2.6 implies that

there are no more than z′

ρ2 such balls which are mutually disjoint. Let {B′i} be a

maximal (in number) set of balls of radius ρ/2 with centers where |α| < 1
2 . Then

the set of concentric balls {Bi} of radius ρ covers the set where |α| < 1
2 .

Step 2. Take ρ = r−1/2 and invoke Lemma 3.6. With the balls {Bi} specified by
the lemma, the next step is to prove that there are many points in X − V which
are not too far from any Bi. The following lemma makes this precise:

Lemma 3.7. Given λ > 0, there exists a constant z ≡ z(λ) which depends only on
c1(E) and the metric, not on r nor (A, (α, β)), with the following significance: Let
V ′ ⊂ X denote the set of points where |α| ≤ 3

4 . (Thus, V ⊂ V ′.) Take any B from
the set {Bi}. Let B denote the ball of radius z

r1/2 whose center is the same as that
of B. Then

volume((X − V ′) ∩B) ≥ λ · volume(B).(3.30)

Proof of Lemma 3.7. The proof uses the monotonicity formula in Proposition 3.1.
Given λ, suppose there exists ζ > 1 and a ball B of radius ζ

r1/2 and center where

|α| < 1
2 with the property that volume(V ′ ∩B) ≥ volume(B)− z1λ

r2 . In particular,

if ζ > z2 · λ1/4, then volume(V ′ ∩B) can be assumed larger than ζ4

2r2 . Thus, EB is

bounded from below by z3ζ
4

r . Now invoke Assertion (1) of Proposition 3.1 to bound
ζ.

Step 3. With the preceding understood, take λ = 1 in Lemma 3.7 and let z0 ≡ z(1)
be the corresponding constant provided by Lemma 3.7. For each Bi from Lemma
3.6’s set of balls, let Bi denote the ball of radius z0

r1/2 whose center is the same as
that of Bi. Let si denote the characteristic function of the ball Bi and let si denote
the characteristic function of the set (X − V ′) ∩Bi. (A characteristic function of
a set is equal to one at points in the set and zero at all other points.)

Note that the integrals of either si or si over X are bounded from above by z1

r2

and bounded from below by 1
z1r2 . Thus, there is a constant κi with

1

z2
< κi < z2(3.31)
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with the property that si − κsi integrates to zero over X . And, there is a unique
C1,1 function ui on X which satisfies the equation

1

2
d∗dui = r · (si − κisi).(3.32)

(The fact that ui is not smooth here follows from the fact that si and si are
characteristic functions. One could smooth the si and si arbitrarily close to the
boundaries of their domains of definition in order to work with smooth functions.
This would make no essential difference in subsequent arguments.)

Step 4. This step will provide a uniform bound for the function ui. The task is
facilitated with the introduction of the Green’s function G for the operator d∗d.
This G can be taken to have the following properties:

(1) G ≥ 1.

(2)
1

κ dist(x, y)2
≤ G(x, y) ≤ κ

dist(x, y)2
,

(3) |∇G(·, y)|x ≤
κ

dist(x, y)3
.

(3.33)

Here, κ ≥ 1 is a metric dependent constant. (Note that dist(·, ·) is the distance
function for the Riemannian metric.)

With G understood, then the function ui solving (3.32) can be taken to be

ui(x) ≡ r
∫
X

G(x, ·) · (si − κisi) · d vol .(3.34)

This last equation can be used to estimate ui. For this purpose, introduce xi to
denote the center of Bi. First of all,∣∣∣∣ui(x)− r ·G(x, xi) ·

(∫
X

(si − κisi)d vol

)∣∣∣∣ ≤ z3

r3/2 dist(x, xi)3
(3.35)

if dist(x, xi) >
10z0

r1/2 . This follows from (3.33)(3) using Taylor’s theorem with re-
mainder. Since (si − κisi) has integral zero over X , the conclusion is that

|ui(x)| ≤ z4

r3/2 dist(x, xi)3
(3.36)

as long as dist(x, xi) >
10z0

r1/2 . On the other hand, it follows from (3.33)(2) and (3.40)
that

ui(x) < z4, where dist(x, xi) ≤
10z0

r1/2.
(3.37)

Step 5. With {ui} understood, define the function u by

u ≡
∑
i

ui.(3.38)

The task now is to verify the properties which are asserted in Lemma 3.5. The
verification will proceed in reverse order, so consider property (3) first:

Clearly,

|d∗du| ≤ 2
∑
i

r · |si − κisi|.(3.39)

The requisite bound follows from (3.39) with the observation that there are at most
z5 terms in the sum in (3.39) which can be non-zero at any given point. (This is
because each term has support only in the ball Bi and no more than z5 of these
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can mutually intersect because the balls {B′i} are mutually disjoint. See Lemma
3.6.)

As for property (2), each si ≡ 0 where |α| < 1
2 , so

1

2
d∗du = r ·

∑
i

si(3.40)

where |α| < 1
2 . And, at x where |α(x)| < 1

2 , the sum on the right side of (3.40) is

greater than one, since si ≡ 1 on Bi and
⋃
iBi contains all points where |α| < 1

2 .
The last part of the proof of Lemma 3.5 is to verify the asserted bound for the

size of u. The following lemma is required:

Lemma 3.8. There is a constant z which depends only on c1(E) and the Riemann-
ian metric and which has the following significance: Fix a point x ∈ X. When n
is a positive integer, let B(x, n) ⊂ X denote the ball with center x and radius n

r1/2 .
Use N(n) to denote the number of balls from the set {Bi} whose centers lie in
B(x, n). Then N(n) < z · n2.

Proof of Lemma 3.8. Each Bi contains the smaller ball B′i which contributes at
least 1

z1r
to EX . These {B′i} are disjoint, so the contribution from B(x, n + 1) to

EX is at least N(n)
z1r

. Now invoke Assertion 1 of Proposition 3.1 to bound N(n).

With this lemma in hand, fix x ∈ X and consider estimating u(x) as follows:
Let Ω(n) denote the set of indices i for which the center of the ball Bi lies in
B(x, n)−B(x, n− 1). (Take B(x, 0) ≡ ∅.) Then,

|u(x)| ≤
∑
i

|ui(x)| =
∑
n≥1

∑
i∈Ω(n)

|ui(x)|,(3.41)

where the sum over n on the right in (3.41) is a sum over positive integers. Note
that the sum over integers n is a finite sum but that the maximum value of n
allowed grows with r as κ · r1/2. (The constant κ is determined by the Riemannian
metric on X .)

The second sum in (3.41) is bounded by

z7 · (N(n)−N(n− 1))

n3
.(3.42)

Thus,

|u(x)| ≤ z8 ·
∑
n

(N(n)−N(n− 1))

n3
= z8 ·

∑
n

N(n) ·
(

1

n3
− 1

(n+ 1)3

)
.(3.43)

The last equality comes by rearranging terms. And, since one can bound the
differences in the sum on the right by z9 · n−4, one has

|u(x)| ≤ z10 ·
∑
n

N(n)

n4
.(3.44)

This last sum is uniformly bounded, independent courtesy of Lemma 3.8. Indeed,
the right side of (3.44) is bounded by

z11 ·
∞∑
n=1

1

n2
< z.(3.45)
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4. The local structure of α−1(0)

Fix a SpinC structure on X with S+ given by (1.14) for some complex line bundle
E → X . The purpose of this section is to study the local structure of α−1(0) for a
large r solution (A, (α, β)) of (1.20). To put this task in context, remember that the
principal goal of this article is to show that α−1(0) is close to a (possibly singular)
pseudo-holomorphic submanifold. Since the question of pseudo-holomorphicity is
a local one, the issue of the local structure of the zero set of α naturally arises.
The local structure of α−1(0) is analyzed by comparing the fields (A, (α, β)) near
the given point with model fields which solve an R4 version of (1.20). (The first
subsection below discusses the model problem for R4.) Proposition 4.2 summarizes
the results of this section. Subsections 4a–c are concerned directly with the local
structure of α−1(0).

Subsection 4d contains an application where it is proved that any of {1 − |α|2,
β,∇aα,∇′Aβ, Fa} decays exponentially fast away from α−1(0) with rate propor-

tional to r1/2.
The final subsection contains proofs of assertions in Proposition 4.1 about the

solutions to the Seiberg-Witten equations on R4.

(a) The local model on C2. To begin, consider R4 with coordinates (y1, . . . , y4),
Euclidean metric

∑
i dy

i ⊗ dyi, and standard symplectic form

ω0 ≡ dy1 ∧ dy2 + dy3 ∧ dy4.(4.1)

The Euclidean metric identifies ω0 as a skew-symmetric endomorphism of R4 which
defines a standard complex structure; the latter giving a standard R linear identifi-
cation R4 ≈ C2. This complex structure will be implicit in much of the discussion
below when the emphasis changes from the real or symplectic properties of R4 to
its properties as the complex manifold C2.

The discussion below considers solutions (A0, (α0, 0)) to (1.20) as written on R4

with r = 1 and with the symplectic form ω0 given in (4.1): Note that when R4 is
thought of as C2, then (1.20) can be interpreted as saying, in part:

(1) FA0 is of type 1-1; thus A0 defines a complex structure on the

(trivial) complex line bundle over C2.

(2) With this complex structure on the trivial line bundle understood,

then α0 is a holomorphic section.

(4.2)

It is important to note that the (A0, α0) ≡ (A0, (α0, 0)) which arise below are
constrained as follows:

(1) |α0| ≤ 1.

(2) |P−FA0 | ≤ |P+FA0 | =
1

4
√

2
(1− |α0|2).

(3) |∇A0α0| ≤ z · (1− |α0|2).

(4) For each N ≥ 1, the integral of (1− |α0|2) over the ball of

radius N is bounded by z ·N2.

(5) The integral over R4 of |P+FA0 |2 − |P−FA0 |2 is finite.

(4.3)

Here, z is a constant.
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Note for future references that the fields (A0, α0) which obey (4.3) have the
following properties:

Proposition 4.1. Let (A0, (α0, 0)) be a solution to (1.20) on R4 using r = 1 and
the symplectic form ω0. Suppose that (4.3) is obeyed. Then

(1) Either |α0| < 1 everywhere, or else |α0| ≡ 1 and (A0, α0) is gauge equivalent
to the trivial solution (0, 1). In the former case, α−1

0 (0) 6= ∅ and α−1
0 (0) is the zero

set of a polynomial in the complex coordinates for R4 = C2.
(2) Either |P−FA0 | < |P+FA0 | everywhere, or else |P−FA0 | ≡ |P+FA0 | every-

where and there is a C linear map s : C2 → C which is such that (A0, α0) are
gauge equivalent to the s-pull back of a pair (A1, α1) of connection A1 on the trivial
line bundle over C and holomorphic section α1 of the said bundle. To be precise,
(A1, α1) on C obey the vortex equation

iFA1 =
1

4
(1− |α1|2) · ω1,

∂A1α1 = 0
(4.4)

and are such that iFA1 is integrable over R2. In (4.4), ω1 is the Euclidean volume
element on R2.

(3) Solutions (A1, α1) on R2 to the vortex equation in (4.4) having integrable
iFA1 have the following properties :

(i) The integral of iFA1 over R2 equals 2πn for n ∈ {0, 1, . . .}.
(ii) This integer n (the vortex number) counts the number of zeros with multiplic-

ities of α1.
(iii) For any given finite set Λ of pairs consisting of a point in C and a positive

integer, there is a unique (up to gauge equivalence) solution (A1, α1) to (4.4)
having iFA1 integrable and having α1 vanishing at each point of Λ to the given
integer order. (And, α1 vanishes at no other points.)

(4) The integral of |P+FA0 |2 − |P−FA0 |2 over R4 is a (non-negative) integer
multiple of 4π2.

(5) Given the constant z in (4.3)(4), there exists an upper bound to the order of
vanishing of α0 at any point in R4.

(6) The set of gauge equivalence classes of (A0, α0) as above which obeys (4.3) for
a fixed value of z and for a fixed upper bound on the integral of |P+FA0 |2−|P−FA0 |2
over R4 is sequentially compact with respect to convergence on bounded subsets of
R4 in the C∞ topology.

(7) Given the value of z in (4.3)(4), there exists z1 > 0 such that

(1− |α0|2) + |∇A0α0|2 ≤ z1 · exp

(
− 1

z1
· dist(·, α−1

0 (0))

)
.

Except for assertion (4) (which is not used here), this proposition is proved in
the last subsection, below. The proof of assertion (4) will appear elsewhere.

(b) From fields on X to fields on C2. Gaussian coordinate systems make the
linear space R4 (alias C2) relevant to the analysis on the manifold X . Indeed,
consider a point x ∈ X . An orthonormal frame for the tangent bundle at x defines
a Gaussian coordinate system at x. Remember that such a coordinate system
defines an embedding h : R4 → X which sends the origin to x and which pulls
back the Riemannian metric g to a metric which is equal to the Euclidean metric to
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second order at the origin. Note that the frame can be chosen so that the symplectic
form on X pulls back as

h∗ω = dy1 ∧ dy2 + dy2 ∧ dy4 +O(|y|).(4.5)

Now, let E be a given complex line bundle over X and use E to define the SpinC

structure whose S+ bundle is given in (1.14). Fix some r ≥ 1, and fix attention on

a solution (A, (α, β)) to (1.20) for the given SpinC structure. Pull-back by h defines
(A, (α, β)) as fields on R4.

Given λ > 0, define the dilation map δλ : R4 → R4 by its action on the coordinate
functions y:

δ∗λy = λ−1y.(4.6)

With x ∈ X chosen, set λ ≡
√
r and define fields (A, (α, β)) on R4 by the rule

(A, (α, β)) ≡ δ∗λh∗(A, (α, β)).(4.7)

On the ball of radius r−1/2, the fields (A, (α, β)) as defined in (4.7) obey:

(1) |α|(y) = |α|(r−1/2y) ≤ O(1).

(2) |β|(y) = |β|(r−1/2y) ≤ O(r−1/2).

(3) |∇aα|(y) = r−1/2|∇aα|(r−1/2y) ≤ O(1).

(4) |∇′Aβ|(y) = r−1/2|∇′Aβ|(r−1/2y) ≤ O(r−1/2).

(5) |FA|(y) = r−1|FA|(r−1/2y) ≤ O(1).

(4.8)

Here, the norms are taken with respect to the Euclidean metric, and the size es-
timates are taken from Propositions 2.1, 2.3, 2.4 and 2.8 (or 3.4). In addition to
(4.8), note that (A, (α, β)) satisfy the Seiberg-Witten equations (1.20) on R4 with

r ≡ 1 and with a metric, g′, and symplectic form ω′ which, where |y| ≤ ρ0 · r1/2,
satisfy:

(1) |g′ − g0| ≤ z · r−1|x|2.
(2) |∇g′| ≤ z · r−1 · |x|.
(3) |∇∇g′| ≤ z · r−1.

(4) |ω′ − ω0| ≤ z · r−1/2|x|.
(5) |∇ω′| ≤ z · r−1/2.

(4.9)

Here, z and ρ0 are r-independent constants; g0 is the Euclidean metric and ∇ is
g0’s Levi-Civita covariant derivative.

With the preceding understood, consider:

Proposition 4.2. Fix a complex line bundle E → X and introduce the SpinC

structure of (1.14). Fix ε > 0, δ > 0, R ≥ 1 and k ≥ 0. Then, there exists
r0 ≡ r0(c1(E), ε, δ, R, k) ≥ 1 such that for all r ≥ r0 the following is true: Let

(A, (α, β)) be any solution to (1.20) for the SpinC structure in (1.14) and for the
given value of r.

Part A: Fix x ∈ X and use λ = r1/2, and fix a Gaussian coordinate system
centered at x to construct the fields (A, (α, β)) as in (4.7). Then, there is a smooth

solution (A0, (α0, 0)) of the r = 1 version of (1.20) on R4 (using the Euclidean
metric on R4 and the standard symplectic form ω0) with the following properties :
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(1) The fields (A0, (α0, 0)) depend on the chosen point x.
(2) After a gauge transformation, the fields (A, (α, β)) and (A0, (α0, 0)) have dis-

tance less than ε from each other in the Ck norm on 1-forms and complex
valued functions on the ball in R4 of radius R with center at the origin.

(3) The fields (A0, (α0, 0)) obey (4.3). The constant z depends on the Riemannian
metric of X and c1(E), but not on r nor (A, (α, β)).

Part B: As x varies through X, one can assume without loss of generality that

(4) |α0| is not constant if |α|(x) < 1− δ.
(5) There exists a constant z which depends only on c1(E) and the Riemannian

metric and which has the following significance: The set of points for which
the integral over the ball of radius R in R4 of the corresponding |P+FA0 |2 −
|P−FA0 |2 is greater than δ has a cover by balls of radius R · r−1/2 with less
than z · δ−1 elements.

(c) Proof of Proposition 4.2. This subsection proves Proposition 4.2. The proof
is divided into two parts.

Part 1. This part proves the following lemma:

Lemma 4.3. Fix a SpinC structure as in (1.14). Let {rn}n≥1 be an unbounded
sequence of positive numbers and let {(An, (αn, βn))} be a corresponding sequence

of solutions to (1.20) for the given SpinC structure. Let {xn} be any corresponding
sequence of points in X, and let {ϕn} be a corresponding sequence of Gaussian
coordinate charts for the xn’s. For each n, use ϕn to construct (An, (αn, βn)) on

R4 as described above. Then, after a gauge transformation of each (An, (αn, βn))

(which will not be noted explicitly) the resulting sequence {(An, (αn, βn))} has an

infinite subsequence which converges in the C∞ topology on compact subsets of R4

to a smooth solution (A0, (α0, 0)) of the r = 1 version of (1.20) as defined by the
Euclidean metric on R4 and the symplectic form ω0. Furthermore, this (A0, α0)
satisfies (4.3).

Proof of Lemma 4.3. The convergence assertion follows from the fact that the equa-
tions in (1.20) are elliptic. (Thus, standard bootstrapping arguments (as in Chapter
6 of [Mo]) can be applied given the initial a priori estimates in (4.8) and (4.9).)
The fact that the limiting solution has the required form (A0, (α0, 0)) follows from
(4.8)(2) and (4.8)(4). The constraints in (4.3)(1–3) follow directly from (4.8).

The fact that (A0, α0) satisfies (4.3)(4) follows from assertion (1) of Proposition
3.1. Indeed, if there is κ > 0 and a ball of radius N for which the integral of
(1 − |α0|2) is larger than κ · N2, then for all n sufficiently large, the integral of

rn · (1− |αn|2)2 over the ball of radius N√
r

with center xn is greater than κN2

2rn
. Now

invoke assertion (1) of Proposition 3.1 to bound κ.
In order to verify (4.3)(5) for (A0, α0), suppose to the contrary that the integral

in question is infinite (note that the integrand is non-negative due to the fact that
(4.3)(2) has been shown to hold). Thus, given κ > 0, there exists N > 1 such that
the integral of |P+FA0 |2 − |P−FA0 |2 over the ball B ⊂ R4 with center at the origin
and radius N is at least 4K. Now, set A ≡ An and A ≡ An. For all n sufficiently
large, the integral of |P+FA|2 − |P−FA|2 over B must be at least 4K. With small
error, this last integral is equal to the integral of |P−FA|2 − |P−FA|2 over the ball
B′ ⊂ X of radius N√

r
and center xn. Hence, this integral must be at least 2K.
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On the other hand, the integral over X of |P+FA|2− |P−FA|2 is equal to c1(E) ·
c1(E), a fixed number. Thus, if K is large, the integral over X−B must be smaller
than −K. Is this possible for large K? The answer is no, because Proposition 3.4
and (2.12) assert that

|P+FA|2 − |P−FA|2 ≥ −z · r · (1− |α|2)− z′,(4.10)

while Lemma 2.6 gives a uniform bound from below for the integral over X of the
right side of (4.10).

Part 2. With Lemma 4.3 understood, a proof of Proposition 4.2 requires the fol-
lowing four steps.

Step 1. Were Part A of the proposition false, there would exist an unbounded se-
quence {rn}, with a corresponding sequence of solutions {(An, (αn, βn))} to (1.20);
plus there would exist a sequence {xn} of points in X with the following properties:
For each index n, construct (An, (αn, βn)) from the solution (An, (αn, βn)) and from

xn and λ =
√
rn as instructed. Then, there is no data (A0, (α0, 0)), as described in

the proposition, which is ε close in the Ck norm to any (An, (αn, βn)) (after some

gauge transformation) on the standard radius R ball in R4. It is this assertion that
will be contradicted in the next step, thus proving Part A of Proposition 4.2.

Step 2. Note that Lemma 4.3 asserts that there is a subsequence of (An, (αn, βn))

which converges (after gauge transformations) in the C∞ topology on compact
subsets of R4 to a solution, (A0, (α0, 0)), to the R4 version of (1.20). And, this pair
(A0, α0) obeys (4.3) with a constant z which is determined solely by the Riemannian
metric and c1(E). This contradicts the assumption in Step 1.

Step 3. This step proves assertion (4). Take r large and take a solution (A, (α, β))

to (1.20) for the given SpinC structure. Take a point x where |α(x)| < 1−δ. By Part
A of Proposition 4.2, one concludes that for large r, the fields (A, (α, β)) are, after
a gauge transformation, very close on a very large ball to (A0, (α0, 0)), a solution
to (1.20) on R4 (as defined with r = 1 and the symplectic form ω0) which obeys
(4.3). In particular, one can assume that |α0(0)| < 1 − δ

2 . With this understood,
then (4.3)(4) implies that |α0| is not constant.

Step 4. This step verifies assertion (5) of the proposition. Let Ωδ ⊂ X denote the
set in question, and let U be a maximal (in number) cover of Ωδ by disjoint balls
of radius R · r−1/2 with centers in Ωδ. Let N denote the number of elements in
U . The proof proceeds by bounding N by some z4 · δ−1. This is sufficient for the
following reason: Because U is maximal, the balls which are concentric to those in
U but with center 2 ·R must cover Ωδ. Thus, if there are N balls in U , then Ωδ can
be covered by less than 32N balls.

To bound N , first digress to consider a point x which is the center of a ball in
U . Since the integral over the radius R ball with center 0 in R4 of |P+FA0 |2 −
|P−FA0 |2 is at least δ, the integral over the ball with center 0 and radius R in R4

of |P+FA|2 − |P−FA|2 will be at least δ − z1 · ε ·R4 for some universal constant z1

which depends only on the constant in (4.3)(4). This follows from assertion (6) of
Proposition 4.1 and assertion (2) of Proposition 4.2. Therefore, if δ > 2 · z1 · ε ·R4,
the integral over this radius R ball of |P+FA|2− |P−FA|2 will be at least δ/2. This

implies that the integral of |P+FA|2 − |P−FA|2 over the ball of radius R · r−1/2 in
X with center x will be at least δ/4.
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With the digression understood, it follows that the balls from U contribute in
total at least N · δ/4 to the integral over X of |P−FA|2− |P−FA|2. Now, remember
that the latter integral is equal to z2 ≡ 4π2c1(E) · c1(E). Thus, the contribution
to this integral from the complement of the union of the balls in U must be more
negative than z2 − N · δ/4. However, as indicated in (4.10), the contribution to
this integral from this complement is bounded from below by some −z3, where z3

depends only on c1(E) and the Riemannian metric. Thus, N is bounded by z4 ·δ−1.

(d) Exponential decay estimates. This subsection presents an application of
Proposition 4.2 which asserts that everything of interest exponentially decays away
from the set where |α| < 1

2 . Here is the precise statement:

Proposition 4.4. Fix a complex line bundle E → X ; there is a constant z which
depends only on c1(E) and on the Riemannian metric and which has the following
significance: Let r ≥ z and suppose that (A, (α, β)) is a solution to (1.20) for the

SpinC structure with S+ as in (1.14). Let q ∈ {r · (1 − |α|2), r3/2β, Fa, r
1/2∇aα,

r∇′Aβ}. Then

|q|(x) ≤ z · r · exp

(
−1

z
r1/2 dist(x, α−1(0))

)
.(4.11)

The remainder of this subsection is devoted to the

Proof of Proposition 4.4. The proof requires five steps. The strategy is to prove the
assertion first for β,∇aα, and ∇′Aβ simultaneously. The assertions for (1 − |α|2)
and Fa are considered subsequently. Before starting, note that the usual convention
about constants labeled as z, z1, etc. will hold. That is, such constants depend only
on c1(E) and the Riemannian metric.

Step 1. This step constitutes a digression of sorts to start the ball rolling with the
following lemma:

Lemma 4.5. Let E → X be a complex line bundle. Given δ > 0, there exists a
constant zδ which depends on δ, c1(E) and the Riemannian metric and which has
the following significance: Let r > zδ and let (A, (α, β)) be a solution to (1.20)

using the SpinC structure in (1.14). Let x ∈ X be a point where |α| < 1− δ. Then
dist(x, α−1(0)) < zδr

−1/2.

Proof of Lemma 4.5. If r is sufficiently large, assertion (4) of Proposition 4.2 gives
a solution (A0, α0) to the r = 1 version of (1.20) on R4 for the point x where
|α0| = 1 − δ

2 . In this case, assertion (1) of Proposition 4.1 implies that α−1
0 6= ∅.

Now invoke assertion (7) of Proposition 4.1 to learn that α0 vanishes at some point
on R4 whose distance to the origin is less than −z2 ln(δ). Here, z2 depends only
on c1(E) and on the metric because of assertion (3) of Proposition 4.2. This same
assertion and assertion (5) of Proposition 4.1 bound the order of vanishing of α0

by a similar constant, z3. Now fix R > −2 · z3 ln(δ) and take k ≥ 2 · z3. With the
preceding understood, Proposition 4.2 finds zδ with the property that when r > zδ,
then α must also vanish on the radius R ball in R4 with center 0.

Step 2. This and the following two steps prove Proposition 4.4 for β,∇aα, and
∇′Aβ. This step derives a differential inequality with an eye towards the eventual
application of the comparison principle. The starting point is (2.38). Care with the
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triangle inequality replaces (2.39) with

1

2
d∗d|∇aα|2 + |∇a∇aα|2 +

r

4
|α|2|∇aα|2

≤
(
z1 · r(1− |α|2) +

r

16

)
|∇aα|2

+ z1 · r|β|2 + z1 · |∇′Aβ|2 +
32

r
|∇′A∇′Aβ|2.

(4.12)

(It is assumed here and below that r is larger than some constant z2 which depends
only on c1(E) and on the Riemannian metric.)

Likewise, care with triangle inequalities replaces (2.41) with

1

2
d∗d|∇′Aβ|2 + |∇′A∇′Aβ|2 +

r

4
|α|2|∇′Aβ|2

≤
(
z3 · r · (1− |α|2) +

r

16

)
|∇′aβ|2 + z3|β|2

+ z3 · |∇aα|2 +
32

r
|∇a∇aα|2.

(4.13)

Add (4.12) to r
32 times (4.13). The result (after a straightforward rearrangement,

and after the discarding of certain manifestly positive terms from the left side) is
the following inequality for y ≡ (|∇aα|2 + r

32 |∇′Aβ|2):

1

2
d∗dy +

r

4
|α|2y ≤

(
z4 · r · (1− |α|2) +

r

16

)
· y + z4 · r · |β|2.(4.14)

Now take the constant z3 from (2.7) and add r2

16z3
times (2.7) to (4.14). Let

y1 ≡
(
|∇aα|2 +

r

32
|∇′Aβ|2 +

r2

16z3
|β|2

)
.

This function obeys the differential inequality

1

2
d∗dy1 +

r

4
|α|2y1 ≤

(
z4 · r · (1− |α|2) +

r

8

)
· y1.(4.15)

Here, z5 is a constant which depends solely on c1(E) and on the Riemannian metric.
It follows from (4.15) and Lemma 4.5 that there exists a constant z5 with the

property that

1

2
d∗dy1 +

r

32
y1 ≤ 0(4.16)

at all points x ∈ X with dist(x, α−1(0)) ≥ z5 · r−1/2.

Step 3. Exponential decay estimates for y1 follow from (4.16) using the comparison
principle and a suitable choice of comparison function. Thus, the introduction of a
suitable comparison function is the next order of business.

To begin, take c ≥ 1 and y ∈ X . Then, consider the function

Hy(·) ≡ 1

dist(·, y)2
exp

(
−1

c
r1/2 · dist(·, y)

)
+ c · exp

(
−1

c
r1/2

)
.(4.17)

The important feature of H is that there is a choice for c ≥ 1 which depends only
on the Riemannian metric (and so is independent of r) and is such that

1

2
d∗dH +

r

32
H ≥ 0(4.18)
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when dist(x, y) ≥ c · r−1/2. (The proof of existence for such a constant c is left
as an exercise. But, here is a hint: First compute (4.18) in Gaussian coordinates
about y.)

With Hy understood, use Lemma 3.6 to find a maximal set {xi} ⊂ α−1(0) for

which the balls {B′i} with centers {xi} and radius r−1/2 are disjoint. Then set

h ≡
∑
i

Hxi.(4.19)

Up to a multiple, this h is the desired comparison function. The following lemma
describes its salient features:

Lemma 4.6. There is a constant z6 which depends only on c1(E) and the Rie-
mannian metric and which has the following significance:

(1) 1
z6 dist(x,α−1(0))2 exp(− 1

cr
1/2 · dist(x, α−1(0))) ≤ h(x),

(2) h(x) ≤ z6 · r · exp(− 1
cr

1/2 · dist(x, α−1(0))),

where dist(x, α−1(0)) ≥ r−1/2.

Proof of Lemma 4.6. The lower bound follows from the definition. The upper
bound is derived as follows: Given x, first find a point x′ ∈ {xi} whose distance
to x is minimal. Then, rearrange the sum in (3.18) as a sum indexed by integers
n = 0, 1, . . . of a preliminary sum over the subset of points in {xi} with distance
from x′ in [n · r−1/2, (n + 1) · r−1/2). Estimate the first sum by introducing the
number N(n) which is the number of points from xi which can lie in the ball of
radius n · r−1/2. With the preceding understood, it follows that

h(x) ≤
∑
n

1

d2 + n2r−1
exp

(
−1

c
r1/2 · (d2 + n2r−1)1/2

)
(N(n+ 1)−N(n))

+ z7 · r · exp

(
−1

c
r1/2

)
.

(4.20)

Here, d ≡ dist(x, x′). (The last term in (4.20) is the number of terms in (4.18) times
the last term in (4.17). The former is bounded, courtesy of Proposition 3.1, by z ·r).
Meanwhile, the sum in (4.20) can be estimated by using the rearrangement trick
that was introduced in (3.43) and then invoking Proposition 3.1 to bound N(n) by
z · n2.

Step 4. Now, (4.16) and (4.18) plus Propositions 2.3 and 2.8 and Lemma 4.6 find
a constant z8 such that

(1)
1

2
d∗d(y1 − z8 · h) +

r

32
(y1 − z8 · h) ≤ 0 where dist(x, α−1(0)) ≥ z5 · r−1/2.

(2) y1 ≤ z8 · h where dist(x, α−1(0)) = z5 · r−1/2.

(4.21)

Thus, the maximum principle applies to bound y1. This gives Proposition 4.4’s
asserted bounds for β,∇aα, and ∇′Aβ.

Step 5. This step uses the bounds for β,∇aα, and ∇A′β to derive the required
bounds for 1 − |α|2 and for Fa. The arguments for both are similar, so only the
case for 1− |α|2 will be presented. To begin, note that (2.3) implies a differential
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inequality for y ≡ |1− |α2| | at points x where |α| > 1/4:

1

2
d∗dy +

r

32
y ≤ z9 · r · exp

(
− 1

2c
r1/2 dist(x, α−1(0))

)
.(4.22)

Now, let h′ denote the function in (4.19) but as defined with r
2 instead of r. This

function obeys the differential inequality

1

2
d∗dh′ +

r

32
h′ ≥ r

64
h′(4.23)

where dist(x, α−1(0)) ≥ 2r−1/2.
Now use (4.22) and (4.23) plus Lemma 4.6 to find a constant z10 (which depends

only on c1(E) and the metric) with the following significance: Introduce y1 ≡
y − z10

r h
′. This function obeys

1

2
d∗dy1 +

r

32
y1 ≤ 0 where dist(x, α−1(0)) ≥ z10 · r−1/2,(4.24)

and it is non-positive where dist(x, α−1(0)) = z10 · r−1/2. With this understood,
the maximum principle gives Proposition 4.4’s claim for |1− |α|2|.
(e) Proofs for C2. The purpose of this subsection is to prove the assertions (1)–
(3) and (5)–(7) of Proposition 4.1. The fourth assertion of Proposition 4.1 will be
proved elsewhere.

It is convenient to prove the assertions in a different order than presented.

Proof of assertion (6). The equations in question are elliptic in a ball with the
gauge fixing condition d ∗ A0 = 0 in said ball. Already, α0 and FA0 are pointwise
bounded in (4.3)(3). Thus, standard elliptic bootstrapping arguments apply (as in
Chapter 6 of [Mo]) to give a priori estimates of derivatives to any order of the fields
(A0, α0). This implies that any sequence of (A0, α0)’s has a subsequence which
converges on compact subsets of R4. Thus, (4.3)(1–4) all hold for the limiting pair
(A0, α0). Since |P+FA0 |2 − |P−FA0 |2 is a nowhere negative function, the integral
of this function for the limiting fields (A0, α0) is no greater than the limit of the
integrals of this function for the elements in the subsequence.

Proof of assertion (2). The proof of this assertion requires four steps.

Step 1. To prove this assertion it is necessary first to prove the part of assertion
(1) which claims that |α0| < 1 everywhere or else |α0| ≡ 1. This claim follows using
the strong maximum principle and the R4 = C2 version of (2.3) with β ≡ 0 and
r ≡ 1. Note that if |α0| ≡ 1, then FA0 ≡ 0 and (A0, α0) is gauge equivalent to the
trivial solution (0, 1).

Step 2. Now turn to the proof proper of assertion (2). The C2 version of (2.19)
(with r = 1 and with R and β both zero) plus the strong maximum principle assert
that the inequality in (4.3)(2) is an equality everywhere if it holds at a single point.

With the preceding understood, assume that (4.3)(2) holds everywhere. This is
equivalent to asserting that

FA0 ∧ FA0 ≡ 0(4.25)

everywhere. Think of C2 as R4 for a moment, and then one can conclude from (4.25)
that iFA0 , as a skew symmetric endomorphism of TR4, has a kernel everywhere.
And, being skew symmetric, this kernel is everywhere at least 2-dimensional. Note
that if FA0 = 0 at a point, then it follows from Step 1 that FA0 ≡ 0 and the solution



SW ⇒ Gr 879

is gauge equivalent to the trivial solution (0, 1). Since this solution is described by
assertion (2), it can be assumed without loss of generality that FA0 is nowhere
vanishing. Thus, as x moves over C2 = R4, the kernel of iFA0 defines a dimension
2 distribution D ⊂ TR4.

Lemma 4.7. The distribution D ⊂ TR4 is integrable. And, it is also complex in
that it is mapped to itself by the complex structure which defines R4 as C2.

Proof of Lemma 4.7. The integrability of D follows from the fact that FA0 is a
closed form. The fact that D is complex is an algebraic consequence of the fact
that FA0 is a form of type 1-1 on C2. (This last property of FA0 was alluded to in
(4.2).)

This lemma implies that the integral manifolds of D define a foliation of C2 with
each leaf being a complex submanifold.

Step 3. This step proves that the foliation from Step 2 is one of the standard fo-
liations by complex dimension 1 subvector spaces. The argument to prove this is
as follows: The distribution D is defined as the kernel of iFA0 as a skew endomor-
phism of the tangent bundle. The kernel of the latter is the same as the kernel of

f ≡ iFA0

|FA0 |
. (Note that |FA0 | is nowhere vanishing, so f is a smooth 2-form on C2.)

The claim now is that f is a constant 2-form. Of course, this claim establishes that
the foliation from D is a foliation of C2 by linear C’s.

With the preceding understood, use f± to denote
√

2 ·P±f and remark that f+

is a constant multiple of ω0 by inspection. (Needless to say, ω0 is constant.) As for
f−, consider analog of (2.18) on C2 with β ≡ 0 and r = 1:

1

2
∇∗∇µ+

1

4
|α0|2µ =

i

4
P−(∇A0α

∗
0 ∧∇A0α0).(4.26)

Contracting both sides of this equation with f− gives the equation

1

2
d∗d|P−FA0 |+ |P−FA0 | · |∇f−|2 +

1

4
|α0|2|P−FA0 |

=
i

4
〈f−,∇A0α

∗
0 ∧∇A0α0〉.

(4.27)

Here, 〈 , 〉 denotes the Euclidean inner product on Λ−. Meanwhile, there is a
similar equation for the norm of P+FA0 : this reads

1

2
d∗d|P+FA0 |+

1

4
|α0|2|P+FA0 | =

1

4
√

2
|∇A0α0|2.(4.28)

Since |P+FA0 | and |P−FA0 | are equal, subtracting (4.28) from (4.27) gives the
identity

|P−FA0 | · |∇f−|2 =
1

4
√

2
(i · 〈
√

2f−,∇A0α
∗
0 ∧∇A0α0〉 − |∇A0α0|2).(4.29)

The right side of (4.29) is non-positive, while the left side is non-negative. Thus,
both sides must be zero. Here are the implications:

(1)
iFA0

|FA0 |
is constant.

(2) ∇A0α
∗
0 ∧∇A0α0 is proportional to iFA0 .

(4.30)

(To obtain (4.30)(2), note that the vanishing of the right side of (4.29) implies
that the anti-self-dual projection of ∇A0α

∗
0 ∧ ∇A0α0 must be along P−FA0 . Its
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self-dual projection is a priori along P+FA0 because α0 is A0-holomorphic. Also,
(4.29) implies that both of these projections have the same length.)

Step 4. As remarked, (4.30)(1) implies that iFA0 pulls back to zero on a standard
foliation of C2 by complex lines, while (4.30)(2) implies that α0 is A0-covariant
along these same complex lines.

The preceding establishes all of assertion (2) except for the fact that iFA1 in
(4.4) is integrable. This last point follows from (4.3)(4).

Proof of assertion (3). This is established in [T4].

Proof of assertion (5). If no such bound existed, there would be a sequence of
(A0, α0)’s whose α0 vanished to higher and higher order at the origin. By invoking
assertion (6) there would be a subsequence which converged in the C∞ topology on
compact subsets to a solution which is described by (4.3). This solution would have
its α0 vanishing to infinite order at the origin. And, its α0 could not be constant
because of (4.3)(4). But this is impossible because α0 is holomorphic.

Proof of assertion (1). Step 1 of the proof of assertion (2) deals with the first sen-
tence of assertion (1).

The fact that α−1
0 (0) is the zero set of a complex polynomial follows from [Rut]

(see also [St]). But, to apply the results in [Rut], remark first that (4.3)(5) plus
assertions (2), (5) and (6) plus (4.3)(4) imply that α−1

0 (0) has the following prop-
erty: Fix R ≥ 1 and consider a sequence of balls {Bi} ⊂ C2 of radius R whose
centers are on α−1

0 (0). Suppose that the sequence of centers is unbounded, with
increasing distance from the origin. Then the sequence of subsets {(A0, α0)|Bi}
converges (after translation to the origin and complex rotations of the coordinates)
to some vortex solution, which means that α−1

0 (0)∩Bi converges to the intersection
of the standard radius R ball with a complex plane through the origin. This plane
should be counted with some a priori bounded multiplicity. Assertion (5) supplies
the a priori bound. These last facts imply that for large enough N , the integral in
(4.3)(4) bounds the area of α−1

0 (0) in the radius N ball.
Finally, consider the assertion that α−1

0 (0) 6= ∅ if |α0| < 1. There are three steps
to this proof.

Step 1. This step considers the possibility of local minima for solutions to (1.20)
on C2.

Lemma 4.8. Let (A0, α0) be a smooth solution to the r = 1, ω = ω0 and β ≡ 0
version of (1.20) on C2. Then |α0| has no non-zero local minima unless |α0| ≡ 1.

Proof of Lemma 4.8. Consider the r = 1, ω = ω0 and β ≡ 0 version of (2.3) on C2

at a hypothetical non-zero local minimum of |α0| where |α0| < 1. There are three
terms on the left side. The first term is non-positive and the third term is negative.
Thus, a contradiction ensues with the claim that the second term is zero. To prove
this claim, remark that as α0 6= 0 near the minimum, one can write α0 ≡ |α0| · u
with |u| = 1. Thus, at the critical point, the second term on the left side of (2.2) is
equal to |α0|2 · |∇a0u|2. Now, the (0, 1) projection of ∇a0u vanishes at the critical
point since α0 is A0-holomorphic. Consider the (1, 0) projection of ∇a0u. This is
the complex conjugate of the (0, 1) projection of ∇a0(u∗). However, u∗ = u−1 since
u has norm 1, so the latter is the (0, 1) projection of −u−2∇a0u which is zero.
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Step 2. This step constitutes a digression to explain an important feature of the
vortex solutions:

Lemma 4.9. There exists a constant z > 0 with the following significance: Fix a
positive integer n, and δ > 0. Let (A1, α1) be a solution to (4.4) on R2 which has
integral iFA1 and vortex number n. Then |α1| > 1 − δ at points with distance z·n

δ

or more from α−1
1 (0).

Proof of Lemma 4.9. Let y ∈ R2 be a point where |α1| ≤ 1 − δ, and let d denote
the distance from y to α−1

1 (0). It follows from Lemma 4.8 that there is a path from
y to α−1

1 (0) along which |α1| is less than 1− δ. Now note that |∇A1α1| is bounded
by a constant c (which is independent of (A1, α1) and n). See [JT, Theorem 8.1].
This implies that |α1| < 1− δ

2 on a set whose area is at least d·δ
4c . Since the integral

of (1− |α1|2) is uniformly bounded by a multiple of n, the lemma follows.

Step 3. Now, suppose that (A0, α0) obeys (4.3) and α0 is never zero. First of all, it
follows from assertions (2), (5) and (6) plus (4.3)(4) that on any sequence of balls
of fixed radii with centers tending to infinity, the fields (A0, α0) must converge (up
to gauge transformation) to those of a vortex solution as described in assertions
(2) and (3) of Proposition 4.1 with an a priori upper bound on the vortex number.
With the assumption being that α0 does not vanish, Lemma 4.8 implies that these
vortex solutions must all be trivial. Thus, |α0| tends to 1 as |x| → ∞ on C2.

Now it follows from Step 1 that |α0| cannot have a non-zero local minimum
unless |α0| ≡ 1.

Proof of assertion (7). The proof is identical in most respects to the proof of Propo-
sition 4.4, so only a sketch will be given. The main difference is that the analog
of Lemma 4.5 must be proved without invoking assertion (7)! The C2 version of
Lemma 4.5 is proved as follows: As remarked earlier, assertions (2), (5) and (6) of
Proposition 4.1 plus (4.3)(4) imply that on any sequence of fixed radii balls with
centers tending to infinity, the fields (A0, α0) converge (up to gauge equivalence)
to a vortex solution with an a priori upper bound on the vortex number. This fact
plus Lemma 4.9 imply Lemma 4.5 for the case C2.

The only other significant change in the argument for Proposition 4.4 is that the
function Hy in (4.17) should be modified by dropping the right most term.

With these changes understood, the remainder of the argument for assertion (7)
continues almost word for word as that for Proposition 4.4; thus the details are left
to the reader.

5. Convergence to a current

The purpose of this section and the next is to prove Theorem 1.3 from Section
1. As remarked at the end of Section 1, the strategy is to take a sequence {rn} of r
values for Theorem 1.3 with the corresponding sequence (An, (αn, βn)) of solutions
to (1.20). The sequence { i

2πFAn} will then be regarded as a sequence of currents
Fn, where

Fn(µ) ≡
∫

i

2π
FAn ∧ µ.(5.1)

This sequence will be shown to have a subsequence which converges to a current, F ,
whose support is a closed set C with finite 2-dimensional Hausdorff measure. The
current F will then be used to define an integer valued, homotopy invariant (called
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I) of a certain class of maps from 2-dimensional disks into X . A crucial point is that
this homotopy invariant assigns a positive integer to any symplectically embedded
disk with non-trivial intersection, but compactly supported intersection with C.
This crucial result is stated in Proposition 5.6, below. The proof of Proposition 5.6
ends this section.

(a) Alternate approaches. There is a second route to proving Theorem 1.3 which
will not be pursued here: Using the local picture in Proposition 4.2, a straightfor-
ward (though tedious) construction produces a symplectic immersion of a curve
near each α−1

n (0). (Each point in α−1
n (0) has its associated data (A0, α0) from

Proposition 4.2. The set α−1
0 (0) can be scaled down (by the inverse of (4.6)) and

identified as a symplectic subvariety in X . Then as x varies through α−1
n (0), the

latter are pieced together to give the symplectic immersion. In this regard, here
is a corollary of Proposition 4.2: If n is large and if, for all x ∈ α−1

n (0), the data
(A0, α0) is a vortex solution from C with vortex number 1, then α−1

n (0) will already
be an embedded symplectic curve.)

In any event, these symplectic immersions become pointwise pseudo-holomorphic
as n tends to ∞ in the sense that the area form differs negligibly from the pull-
back of the symplectic form in the n→∞ limit. Thus, the area of the immersion
approaches the theoretical minimum value 2π[ω] · c1(E) as n → ∞. (Here, [ω]
denotes the cohomology class of the symplectic form and · denotes the cup product
pairing in cohomology.) The fundamental compactness theorem for bounded area,
rectifiable currents in [FF] (see Theorem 3.3 in [La]) can then be quoted to find a
limit which is an area minimizing, 2-dimensional rectifiable current. Then a hard
theorem of Sheldon Chang [Ch] can be used to infer that the latter is the image
of a surface by a map; and the area being 2π[ω] · c1(E) implies that the map is
pseudo-holomorphic.

If rectifiable currents are not to your liking, there is a third route to proving
Theorem 1.3. This takes the sequence of symplectic immersions previously alluded
to and uses a generalization of Ye’s proof (in [Ye]) of Gromov’s compactness theo-
rem (in [Gr]) to prove that there is a limit which is the image of a complex curve by
a pseudo-holomorphic map. (Note that a uniform Hölder estimate exists for a sym-
plectic immersion on any disk where the harmonic map energy is small.) This third
approach is complicated only because the aforementioned sequence of symplectic
immersions need not admit (apparently) a bound on the genus of the immersing
surface. However, with the help of the monotonicity formula in Proposition 3.1,
the unpleasant growth of the genus with the sequence index n can be dealt with.

(b) The sequence of currents. Define the sequence {Fn} of currents as in (5.1).
Because of Lemma 2.6 and Proposition 3.4, this sequence is uniformly bounded
with respect to the mass norm. That is,

M(Fn) ≡ sup
06=µ∈Ω2(X)

{
|Fn(µ)| ·

(
sup
x∈X
|µ(x)|

)−1}
(5.2)

obeys

M(Fn) ≤ 1

2π
‖FAn‖L1 ≤ [ω] · c1(E) +

z1

r
,(5.3)

where z1 depends only on c1(E) and the Riemannian metric. (The convention
henceforth in this section about constants which are labeled zanything is that they
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depend only on c1(E) and the Riemannian metric. In particular, they are indepen-
dent of the index n.)

The bound in (5.3) implies that there is a subsequence of the original sequence
of currents (henceforth relabeled as {Fn}) which converges in the weak topology
(as defined by the norm M(·)) to a current, F . Note that this current is closed (as
each Fn is closed) in the sense that it annihilates the image of d; and F is integral
in the sense that its value is an integer on any closed form which evaluates as an
integer on all closed cycles. The current F is Poincaré dual to c1(E) in the sense
that

F(µ) = [µ] · c1(E)(5.4)

for any closed 2-form µ.

(c) The support of F . The purpose of this subsection is to identify the support
of the current F . The monotonicity formula in Proposition 3.1 plays the key role
throughout.

To begin, note that according to Lemma 3.6, there is a constant z which depends
only on c1(E) and the Riemannian metric and which has the following significance:

Fix r ≥ 1 and a solution (A, (α, β)) to (1.20) for the SpinC structure in (1.14). If
ρ ≥ z · r−1/2, then no set of disjoint balls of radius ρ with centers on α−1(0) has
more than z · ρ−2 elements.

Let r and (A, (α, β)) be as in the preceding paragraph. Fix ρ > z · r−1/2 and
let Λ′ be a maximal (in number) set of disjoint balls of radius ρ with centers on
α−1(0). Let Λ be the set of balls of radius 2ρ with the same centers as the balls in
Λ′. Because Λ′ is maximal, the balls in Λ provide a cover of α−1(0).

With the preceding understood, for each positive integer N , and for each index
n for which rn > z2(256)N , find a maximally disjoint set Λ′n(N) of balls of radius
16−N with centers in α−1

n (0). Let Λn(N) denote the corresponding set of concentric
balls with radii 2 · (16)−N . As remarked, the set Λn(N) contains no more than
z · (256)N elements and its balls cover α−1

n (0).
One may suppose that z here is an integer, and with this understood, label and

order the centers of the balls in Λn(N), and then add the final point some number
of times (if necessary) to make an ordered set (xn(1;N), . . . , xn(z(256)N ;N)) ⊂
α−1
n (0). Introduce Un(N) to denote the union of the set of balls with radii 4·(16)−N

and with centers at the {xn(i;N)}.
By a countable winnowing process, one can find an infinite subsequence of indices

n (hence labeled as n = 1, 2, . . . ) for which the sequence of {xn(i : N)}n≥1 converges
to some x(i;N) ∈ X for each pair (i,N). With this understood, let U(N) denote
the union of the set of z · (256)N balls with radii r · (16)−N and with centers at
the points {x(i;N)}. It follows from the construction that the sets {U(N)}N≥1 are
nested in the sense that

Lemma 5.1. There is the inclusion U(N + 1) ⊂ U(N) as

dist(U(N + 1), X − U(N)) ≥ 3
216−N .(5.5)

Proof of Lemma 5.1. Note that Un(N + 1) ⊂ Un(N). Indeed, every point in the
former has distance 1

416−N or less from α−1
n (0), and every point in α−1

n (0) has

distance 2 · 16−N or less from some xn(i;N). Thus, every point in U(N + 1) has
distance 2 1

416−N or less from some xn(i;N). Meanwhile, every point not in U(N)

has distance at least 4 · 16−N from all xn(i;N).
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Given the nested set {U(N)} above, define

C ≡
⋂
N

U(N).(5.6)

Lemma 5.2. The set C has finite 2-dimensional Hausdorff measure. Furthermore,
there is a constant z1 > 0 which depends only on c1(E) and on the Riemannian
metric and which has the following significance: Let x ∈ C and let B ⊂ X be a ball
in X of radius ρ with x as center. Then the Hausdorff measure of C ∩B is at least
z1 · ρ2. Finally, C contains the support of F .

Proof of Lemma 5.2. It follows from the construction that given any ε > 0, the
set C has a covering by no more than z · ε−2 balls of radius ε. Thus, C has finite
2-dimensional Hausdorff measure, the constants from Lemma 3.6 giving the bound.
The upper bound on the 2-dimensional measure of C ∩B follows from Proposition
3.1.

As for the assertion about the support of F , consider a smooth form µ whose
support is disjoint from C. Then the support will be disjoint from Un(N) for some
N and for all n sufficiently large. Thus, according to Proposition 4.4,

|Fn(µ)| ≤ z · r · exp(−z−1r1/2
n · 4 · 16−N) · sup

x
|µ(x)|.(5.7)

It follows from (5.7) that limn→∞ |Fn(µ)| = 0.

An additional corollary can be drawn from the preceding discussion, this being
the “type” of F . To explain, remember that the symplectic form and the metric
together define an almost complex structure J for X . This J acts pointwise on
T ∗X and so defines an involution J on the Ω2(X). Thus, there is dual involution
(also called J) on currents. Say that a 2-dimensional current is of type 1-1 if it is
invariant under J.

Lemma 5.3. The current F is of type 1-1.

Proof of Lemma 5.3. Using a partition of unity for the cover ofX by {X−U(N+1),
U(N)} decompose a 2-form µ into a sum µ1 + µ2, where µ1 has support on X −
U(N + 1) and where µ2 has support on U(N). According to (5.9), the value of
Fn on µ1 tends to zero as n tends to ∞ for fixed N . Meanwhile, the value of Fn
on µ2 − Jµ2 involves only the non-J-invariant terms in FAn ; namely the terms in
P+FAn which are linear in βn and β∗n (see (1.20)). And, Hölder’s inequality and
Proposition 2.3 bound |Fn(µ2 − Jµ2)| by

z · sup
x
|µ2 · (‖rn(1− |αn|2)‖L1 ·Volume(UN ) + r−1

n )1/2.(5.8)

This last expression is O(16−N) as n → ∞, courtesy of Lemma 2.6 and the fact
that the volume of Un(N) is no greater than z · 16−2N . Since N in (5.8) can be
arbitrarily large, the lemma follows.

(d) Families of pseudo-holomorphic disks. As remarked previously, C will
be studied by analyzing its intersections with pseudo-holomorphic disks. The plan
requires a varied family of such disks; and this subsection serves as a digression
which describes the required family.

To begin, fix a point x ∈ X and Gaussian normal coordinates centered at x which
identify a geodesic ball about x with a ball in R4 and take x to the origin. As in the
previous chapter, identify R4 = C2 so that ω|x = ω0 ≡ dx1 ∧ dx2 + dx3 ∧ dx4. Use
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(w0, w1) for the complex coordinates on C2. (Complex coordinates such as these
will henceforth be called complex Gaussian coordinates centered at x.)

In these coordinates, the almost complex structure J from X agrees with the
standard almost complex structure J0 from C2 at the origin, but typically nowhere
else. Thus, a J0-holomorphic disk will not usually be J-holomorphic except at
isolated points. With this understood, the plan for this subsection is to establish
a perturbation lemma which constructs J-holomorphic disks from J0-holomorphic
ones. Of immediate interest in the next subsection are the J-pseudo-holomorphic
versions of the family {Dw}w∈C of holomorphic disks where

Dw ≡ {(ζ, w) : |ζ| < ρ}.(5.9)

A pseudo-holomorphic version of (5.9) is given in Lemma 5.4 below. Lemma 5.4
follows from a general perturbation result which is expressed as Lemma 5.5; various
applications of Lemma 5.5 are sprinkled throughout subsequent subsections and
Section 6.

Lemma 5.4. There exists ρ0 > 0 and z which depend only on the symplectic form
ω and the Riemannian metric and which have the following significance: Fix x ∈ X
and complex Gaussian coordinates (w0, w1) centered at x as above (so ω|x = ω0).
Suppose that ρ < ρ0 and let D ⊂ C denote the disk of radius ρ. There is a
diffeomorphism Θ : D ×D → C2 which obeys:

(1) For all w ∈ D, Θ(Dw) is a pseudo-holomorphic submanifold.
(2) For all w ∈ D, Θ(Dw) contains (0, w).
(3) For all w ∈ D, dist((ζ, w); Θ(ζ, w)) ≤ z · ρ · |ζ|.
(4) For all w ∈ D, the derivatives of order m of Θ are bounded by zm · ρ, where

zm depends only on the Riemannian metric and on ω.

This lemma is proved below. The proof requires a digression to consider the gen-
eral set up for studying perturbations of a J0-holomorphic disk. The perturbations
in question are analogous to the holomorphic perturbation of Dw as {(ζ, w+f(ζ))},
where f = cmζ

m+ · · ·+c0 is a polynomial of degree m. In any event, the digression
is summarized by Lemma 5.5. This lemma has two aspects, the first being an exis-
tence statement (which is used to prove Lemma 5.4) and the second a construction
of a class of J-pseudo-holomorphic perturbations of a given J-pseudo-holomorphic
disk.

To start the digression, introduce D0 ≡ {(ζ, 0) : |ζ| < ρ}. Now, let f : C → C
be a complex polynomial and let u : C → C be a smooth map. The task for this
digression is to find ρ0 and a smooth, complex valued function τ on D0 so that the
map q : D0 → C2 which sends ζ to

q(ζ) ≡ (ζ, u(ζ) + f(ζ) + τ(ζ))(5.10)

be J-pseudo-holomorphic when ρ < ρ0.
The condition that q be pseudo-holomorphic imposes a differential constraint on

τ of the following schematic form:

∂τ

∂ζ
+

{
H0 +

∂u

∂ζ

}
+H1 · dRθ +H4 · [dθR ⊗ dθR] = 0.(5.11)

Here, θ ≡ u + f + τ and dRθ is the differential of θ as a map from R2 to R2. In
(5.11), each Hi is the pull-back via q of a smooth tensor, Hi, which is defined on a
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ball in C2 of some radius ρ1 > 0 with center 0; on this ball, Hi obeys

|∇mHi|x ≤ zm · |∇m(J − J0)|x.(5.12)

(Note that Hi is constructed from the coefficients of J − J0, a tensor on C2.)
It proves convenient to extend (5.12) as an equation over a somewhat larger disk

in C. For this purpose, choose a smooth function χ : [0,∞)→ [0, 1] which is 1 on
[0, 1] and which vanishes on [1.5,∞). Let χρ : C→ [0, 1] denote the function which
sends ζ to χ(ρ−1 · |ζ|). Now write the right side of (5.11) as Q and consider solving
for a complex valued function τ on C which obeys

∂τ

∂ζ
+ χρ ·Q = 0.(5.13)

The plan is to search for a solution τ of the form

τ |ζ = c ·
∫

1

(ζ − η)
(χρ ·Q)|η d2η,(5.14)

where c is an appropriate constant. The search will cover the Banach space Kρ of
complex valued functions on C which have Hölder continuous second derivatives
with exponent 1/2 and which restrict to the radius 4ρ circle (centered at 0) in the
span of the functions {e−iθ, e−2iθ, . . . }. (The point is that the Green’s function in
(5.14) maps Cm,δ functions to Cm+1,δ with bounded norm for any integer m ≥ 0
and δ ∈ (0, 1). See, e.g. [DN].) It is convenient to introduce the following norm on
this space:

‖τ‖ ≡ sup
t∈C

(|τ | + ρ · |dτ |+ ρ2 · |∇ dτ |)

+ ρ5/2 · sup
t,s∈C

|∇ dτt −∇ dτs|
|t− s|1/2 .

(5.15)

The details of this fixed point approach are straightforward and omitted save for
the following lemma which summarizes:

Lemma 5.5. There exist constants ρ0 > 0 and z1, z2 > 0 with the following signif-
icance: Suppose that ρ < 1

2ρ0 and suppose that f = cmζ
m+ · · ·+ c0 is a polynomial

of degree m with ‖χρf‖ ≤ z1. Suppose that u is a smooth, complex valued function
on the radius 2ρ disk with ‖χρu‖ ≤ z1 also.

(1) Equation (5.17) has a unique solution τ in Kρ with

‖τ‖ ≤ z2 · (ρ2 + ‖χρu‖+ ρ · ‖χρf‖).
(2) The function τ is smooth.
(3) The function τ is jointly infinitely differentiable with respect to ζ and to the

variables {ck} of f ; and ‖ ∂τ∂ck ‖ ≤ zkρ
k+1.

Here, zk depends only on k, ω and the Riemannian metric.
(4) Suppose that q0 : D → D × D which sends ζ to (ζ, u(ζ)) is J-pseudo-

holomorphic. Then ‖τ‖ ≤ z2 · ρ · ‖χρf‖ and ‖ ∂τ∂ck ‖ ≤ zk · ρ
k+1.

(5) In any case the map q in (5.10) is pseudo-holomorphic on D.

This lemma ends the digression.

Proof of Lemma 5.4. Lemma 5.4 follows from Lemma 5.5 in the case u = 0 with
the help of the implicit function theorem. Indeed, according to Lemma 5.5, there
exists ε > 0 with the property that when |c0| < ε, there is a unique, small solution
τ ≡ τc0 to (5.11) for the case u ≡ 0 and f ≡ c0. The corresponding map q ≡ qc0 in
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(5.10) is then pseudo-holomorphic. As the pair (ζ, c0) vary, (5.10) defines a map,
σ, from a neighborhood of the origin in C2 to R4. Thus, σ(ζ, c0) ≡ qc0(ζ). The
inverse function theorem asserts that σ is a diffeomorphism on some neighborhood
of 0 in C2 if its differential at 0 is invertible. This will be the case, and Lemma 5.4

will follow if |∂τc0∂c0
| < 1 at (ζ, c0) = 0. The latter inequality is insured by assertion

(4) of Lemma 5.5 when ρ is small.

(e) A local intersection number. This subsection provides the principal tool
for studying C, that being Proposition 5.6, below, which asserts that C has positive
intersection number with certain embedded disks.

The statement of Proposition 5.6 requires a preliminary digression. To start the
digression, fix a point x ∈ C and fix a Gaussian coordinate system ϕ : R4 → X
which is centered at x and which has ϕ∗ω|x = ω0, where ω0 ≡ dx1∧dx2 +dx3∧dx4.
As in the previous section, use the Euclidean metric and ω0 to identify R4 with
C2 with coordinates (w0, w1). The map ϕ is an embedding on some ball B ⊂ C2

with center 0, and with this understood, use ϕ to identify B with ϕ(B). (This
identification will now be implicit.) Fix ρ > 0 and let D denote the disk with
radius ρ and center 0 in C. Make ρ small enough so that D ×D ⊂ B.

Each point w ⊂ D labels the disk Dw in (5.11). For small ρ, the map Θ in
Lemma 5.4 is defined. Consider, for each w ∈ D, the sequence{∫

Dw

1

2π
Θ∗FAn

}
n=1,2,...

.(5.16)

Proposition 5.6. Suppose that C intersects the closure of Θ(D0) only at the ori-
gin. Then

(1) For all w in a neighborhood of 0, the sequence in (5.16) converges.
(2) The limit is independent of w in a neighborhood of 0.
(3) The limit, m, is an integer which is greater than zero.
(4) Let H : [0, 1]×D0 → D ×D be a smooth map with H(0, ·) ≡ Θ|D0 and with

C’s intersection with the closure of Image(H) inside Image(H). Then{∫
D0

i

2π
H(1, ·)∗FAn

}
n=1,2,...

also converges with limit m.

The rest of this subsection is occupied with the proof of this proposition.

Proof of Proposition 5.6. Only the positivity ofm in the third assertion is hard. For
the rest, remark first that C is closed and that C intersects Θ(D0) only at the origin.
Thus, there exists ε1 such that the intersection of C with Vε1 ≡

⋃
w:|w|≤ε1 Θ(Dw)

is compact.
Therefore, it follows from (5.7) and Stokes’ theorem that the integrals of i

2πΘ∗FAn
over Dw and Dw′ are equal to within a factor of z1 ·rn ·exp(−z−1

1 r
1/2
n ) if |w|+ |w′| <

ε1. (Given the validity of the first assertion of Proposition 5.6, this last remark im-
plies the second assertion of the proposition.) The approximate w-independence of
the integrals of i

2πΘ∗FAn over Dw implies that the integral of i
2πFAn over Θ∗D0

is equal (within the small factor of z1 · rn · exp(−z−1
1 · r1/2

n )) to the integral of
− 1

2π2ε21
Θ∗FAn ∧dw0∧dw∗0 over Vε1 . And, the latter integral converges as n tends to

∞ because the sequence of currents {Fn} is assumed to converge. Thus assertions
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(1) and (2) of Proposition 5.6 have been proved. Assertion (4) follows from (5.7)
and Stokes’ theorem.

To prove that the limit m is an integer, identify D0 as a disk of radius ρ in

S2. Since |∇Θ∗An(Θ∗αn)| ≤ z · rn · exp(−ρ·r
1/2
n

z ) near the boundary of the D0

(courtesy of Proposition 4.4), the restriction of Θ∗An to D0 extends over S2 as
a smooth connection, A′, on a complex line bundle over S2 whose curvature is

bounded in size by O(rn · exp(−ρ·r
1/2
n

z )) away from D0. The first Chern number

of this line bundle (an integer) is the integral over S2 of i
2πFA′ , which is within

O(rn · exp(−ρ·r
1/2
n

z )) of the integral of i
2πΘ∗FAn over D0.

The remainder of this subsection proves that Proposition 5.6’s integer m is pos-
itive. This part of the proof of assertion (3) of Proposition 5.6 is accomplished in
four steps.

Step 1. This step introduces the key lemma that controls the integrals of i
2πΘ∗FAn

over pseudo-holomorphic disks (such as one from Lemma 5.4).

Lemma 5.7. Let E → X be a complex line bundle. There exists a constant z which
depends only on c1(E) and on the Riemannian metric and which has the following

significance: For r ≥ 1, let (A, (α, β)) be a solution to (1.20) for the SpinC structure
in (1.14). Let Σ ⊂ X be a pseudo-holomorphic submanifold. Then the pull-back to
Σ of i

2πFA involves only the terms

1

16π
(1− |α|2 + |β|2) · ω +

i

2π
P−FA.(5.17)

Furthermore, the restriction of (5.17) to Σ has the form h · d volΣ, where d volΣ is
the area 2-form from the induced metric, and where h is a function on Σ which is
bounded from below by −z.

Proof of Lemma 5.7. This statement is true if true at each point of Σ. Let x ∈ Σ
and let (w0, w1) be (complex) Gaussian coordinates near x as in the previous section
(so x corresponds to the origin in C2 and ω|x = ω0). Note that the almost complex
structure J on TX restricts to x as the given complex structure TC2|0. Thus, the
assertion that Σ is pseudo-holomorphic implies that (w0, w1) can be chosen so that
TΣ|x be annihilated by i

2 dw0 ∧ dw∗0 . The terms in (1.20) which involve αβ∗ and
α∗β restrict at x as linear combinations of dw0 ∧ dw1 and its complex conjugate.
Thus, these restrict as 0 to Σ at x. This proves the first assertion of the lemma.
The second assertion follows from Proposition 3.4

Step 2. This step introduces a useful family of pseudo-holomorphic perturbations
of the disk Θ(Dw). To begin, remark that given ε > 0, there are, for all n sufficiently
large, points of α−1

n (0) which have distance ε or less to the point x.
With ε > 0 chosen small and n chosen large, focus attention on a point x′ ∈

α−1
n (0) which is very close to x. Assume that dist(x′, x) < ε. The point x′ lies in

Θ(Dw) for some w ∈ C with |w| < ε.
Fix complex Gaussian coordinates (w′0, w

′
1), centered at x′. There is a unique

complex line Π0 through 0 in the (w′0, w
′
1) version of C2 which is tangent to Θ(Dw)

at 0. (Remember that Θ(Dw) is pseudo-holomorphic so holomorphic at 0 in the
(w′0, w

′
1) version of C2.) The line Π0 can be taken as the set where w′1 ≡ 0.

Given κ ∈ C, use Πκ to denote the complex line in the (w′0, w
′
1) version of C2

where w′1 = κw′0. Given δ > 0, use Ω ⊂ CP1 to denote the subset of complex lines
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Πκ with |κ| < δ. The next lemma asserts that when δ is small, then each complex
line in Ω parameterizes a pseudo-holomorphic perturbation of Θ(Dw) through x′.

Lemma 5.8. There exists z > 0 which depends only on the Riemannian metric
and on ω; and there exists δ0 > 0 and ε0 > 0 which depend on the point x. These
have the following property: Require that the distance from x′ to x be less than ε0.
Take δ < δ0 and then define Ω as above. Let D2 ⊂ D denote the disk with radius
ρ
2 . There is a J-pseudo-holomorphic map Θ0 : D2 ×Ω→ D×D with the following
properties :

(1) Θ0(·, 0) ≡ Θ(·, w).
(2) Write Θ−1(x′) ≡ (ζ0, w). Then Θ0(ζ0, κ) ≡ x′ for all κ ∈ Ω.
(3) Θ0(D2, κ) is tangent to the plane Πκ at x′.
(4) The second derivatives of Θ0(·, κ) are bounded by z.
(5) C intersects the closure of Θ0(D2, κ) in Θ0(D2, κ) for all κ ∈ Ω.

Proof of Lemma 5.8. To ease the notation, take x′ = Θ(0, w). Then, the map
Θ(·, w) has the form ζ → (ζ, u(ζ)) in the (w′0, w

′
1) coordinates. With this under-

stood, look for Θ0(·, κ) to be a map which sends ζ to q(ζ) ≡ (ζ, u(ζ) + (κ+ η0) · ζ
+ η1 + τ(ζ)), where η0,1 ∈ C will be determined by the constraints of assertions
(2) and (3). With the preceding understood, now apply Lemma 5.5 to find that
when |κ|, |η0| and |η1| are all small, there is a unique solution τ ≡ τ [κ, η0, η1] to
(5.11) with ‖τ‖ ≤ z · (ρ2(|κ| + |η0|) + ρ|η1|). Lemma 5.5 insures that Θ0(·, κ) is
pseudo-holomorphic.

Now, assertion (1) is satisfied by construction. To obtain assertions (2) and (3),
fix κ and let (η0, η1) vary over a small ball Bη ⊂ C2 about 0 to define a smooth map

σ : Bη → C×CP1 which associates to each pair (η0, η1) the following pair: First, the
w1 coordinate of the q(ζ = 0), with q as above (and see (5.10)). Second, the tangent
plane to the image of q at q(ζ = 0). That is, σ(η0, η1) = (η1 + τ(0), [1, κ+ η0 + τ ′],
where τ ′ ≡ ∂τ

∂ζ |ζ=0. Now invoke assertion (4) of Lemma 5.5 and the implicit function

theorem to choose (η0, η1) as smooth functions of κ (with |η0| ≤ z · ρ|κ| and |η1| ≤
z · ρ2 · |κ|) so that σ(η0, η1) ≡ (0, [1, κ]). Assertions (2) and (3) of Lemma 5.8 are
therefore satisfied with these choices for the pair (η0, η1).

Assertion (4) of Lemma 5.8 follows from Lemma 5.5 directly. And, assertion (5)
follows for suitable ε and δ0 because C ⊂ X is closed.

Step 3. Let x′ be as in the preceding step. This step finds a disk D ≡ Θ0(D2, κ) as
above which intersects α−1

n (0) at x′ in a nice way. To begin, observe that according
to Proposition 4.2, there is no generality lost in assuming that after rescaling (as in
(4.6)), the data (An, (αn, βn)) is within 8−n in the Ck norm on the radius 2n ball

about 0 of some solution (A0, α0) of the Seiberg-Witten equations on C2 (this is the

(w′0, w
′
1) version of C2). Here, one can assume that 2n · r−1/2

n � 2−n. The integer
k is determined as follows: Remember that α−1

0 (0) is an algebraic curve through 0
in C2, of a priori bounded degree; and with this understood, one can fix any value
of k which is, say, ten times this a priori bound.

The fact that α−1
0 (0) is the zero set of a polynomial with an a priori bounded

degree implies that the completed curve in CP2 intersects the CP1 at ∞ in C2 in
a finite set with an a priori bound on the number of elements. This number, z1,
depends only on c1(E) and on the Riemannian metric. The existence of such a
bound has the following consequence: Given δ1, there are some z1 disks in CP1 of
radius δ1 such that any complex line Π ∈ C2 through 0 whose parameter is outside
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all of these disks has the following property: Any point ζ ≡ (w′0, w
′
1) in Π whose

distance from the origin is 2n obeys

dist(ζ, α−1
0 (0)) ≥ δ1

z2
2n.(5.18)

Here, z2 depends on the a priori degree bound (that is, on c1(E) and the Riemannian
metric). These z1 disks will be called bad disks.

With z1 as above, set δ1 ≡ δ0
z1·103 .

Step 4. Let Ω be as described in Lemma 5.8 and pick κ ∈ Ω which avoids all bad
disks. Write Θ−1(x′) as (ζ0, w) and let D′′ ⊂ C denote the disk with center ζ0
and radius 2n

r
1/2
n

. Then, the integral of i
2πFAn over Θ0(D′′, κ) can be computed by

comparing it to the integral of i
2πFA0 over the rescaled version in C2 (via (4.6))

of Θ0(D′′, κ). The latter integral is computed using Proposition 4.1: It is within
exp(− δ

z2·2n ) of a positive integer.

Meanwhile, the integral of i
2πFA0 over the rescaled (via (4.6)) version of Θ0(D′′, κ)

is within 8−nπ · (2n)2 = z3 ·4−n of the integral over the same disk of i
2πFAn . (Here,

remember that An is obtained from An by rescaling with (4.6).) Thus, the integral
of i

2πFAn over Θ0(D′′, κ) has the form

m0 +O
(

4−n + exp

(
− δ1
z22n

))
,(5.19)

where m0 is a positive integer.
To estimate the value of the integral over the remainder of Θ0(D2, κ), apply

Lemma 5.7 to conclude that the integral over the remainder can be no smaller than
−z3 · ρ2. One therefore concludes that the integral of i

2πFAn over the whole of
Θ0(D2, κ) is no smaller than

1− z3 · (4−n + ρ2) ≥ 1

2
(5.20)

if ρ is small.
This last estimate implies the positivity of the limit m from Proposition 5.6.

6. Positivity and pseudo-holomorphic curves

This section applies the intersection theoretic result from Proposition 5.6 to
prove that C is the image of a pseudo-holomorphic curve. The basic strategy dates
back to [Ki] at least. To understand the strategy, one should understand first a
proof of (1.23). For a proof, use Taylor’s theorem with remainder to represent Σ
near a point as graph over its tangent space. If the tangent space is not complex
at the given point, then it is easy to write down a linear CP1 which has negative
intersection number with Σ at the point.

Proposition 6.1, below, concerns a set C, in a compact, symplectic 4-manifold X ,
with some special homological properties. Subsection 6a, below, supplies Proposi-
tion 6.1 and discusses its relevance to C from (5.6). Modulo the proof of Proposition
6.1 (which occupies the remainder of this section), the proof of Theorem 1.3 is com-
pleted in the first subsection.

The remaining subsections prove Proposition 6.1 in stages. Subsection 6b proves
that C has locally the structure of a continuous, multi-valued graph over a disk.
Subsection 6c proves that C is, almost everywhere, a Lipschitz submanifold of X .
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Subsection 6d then proves that C is, almost everywhere, a pseudo-holomorphic
submanifold. The last subsection considers C’s singularities and completes the
proof of Proposition 6.1.

(a) Positive cohomology assignments. A preliminary three part digression is
required to state Proposition 6.1. For the purposes of the digression, let C ⊂ X be
a set. For Part 1 of the digression, let D ⊂ C denote the standard unit disk. A
map σ : D → X will be called admissible when C intersects the closure of σ(D)
inside σ(D). Part 2 of the digression introduces the notion of a positive cohomology
assignment to C. This is an assignment of an integer, I(σ), to each admissible map
σ : D → X . But, the following criteria have to be met:

(1) If σ : D → X − C, then I(σ) = 0.

(2) If σ0, σ1 : D → X are admissible and homotopic via an admissible

homotopy (a homotopy h : [0, 1]×D → X where C intersects the

closure of Image(h) inside Image(h)), then I(σ0) = I(σ1).

(3) Let σ : D → X be admissible and let θ : D → D be a proper,

degree k map. Then I(σ ◦ θ) = k · I(σ).

(4) Suppose that σ : D → X is admissible and that σ−1(C) is

contained in a disjoint union
⋃
νDν ⊂ D where each Dν ≡ θν(D)

with θν : D → D being an orientation preserving embedding.

Then I(σ) =
∑
νI(σν).

(5) If σ : D → X is admissible and a pseudo-holomorphic embedding

with σ−1(C) 6= ∅, then I(σ) > 0.

(6.1)

Part 3 of the digression considers the following example: Let Σ be a compact,
complex curve and let ϕ : Σ→ X be a pseudo-holomorphic map. Here is a positive
cohomology assignment for C ≡ ϕ(Σ): When σ : D → X is admissible, there are
arbitrarily small perturbations of σ which produce a map σ′ which is homotopic
to σ through admissible maps and which is transversal to ϕ. The fiber product
T ≡ {(x, y) ∈ D × Σ : σ′(x) = ϕ(y)} is thus a smooth, oriented, 0-dimensional
submanifold of D×Σ; that is, T is a finite set of signed points. Declare I(σ) to be
the sum of these signs.

End the digression.

Proposition 6.1. Let X be a compact, symplectic 4-manifold with compatible al-
most complex structure and let C ⊂ X be a closed set with finite 2-dimensional
Hausdorff measure and a positive cohomology assignment. Then there is a compact,
complex curve Σ and a pseudo-holomorphic map ϕ : Σ → X such that C = ϕ(Σ).
Furthermore, the positive cohomology assignment for C is identical to that described
above for the pair (ϕ,Σ).

In the case of C from (5.6), a positive cohomology assignment is obtained via
Proposition 5.6. The following lemma states the case.

Lemma 6.2. Let C be as in (5.6) and Lemma 5.2 and let σ : D → X be an ad-
missible map. Then {

∫
D

i
2πσ

∗FAn}n=1,2,... converges to an integer, I(σ). And, the
assignment of I(σ) to such an admissible σ defines a positive cohomology assign-
ment.
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Proof of Lemma 6.2. Assuming that the limit exists, we argue as in the proof of
Proposition 5.6 to establish properties (1)–(4) in (6.1). To find the limit, first per-
turb σ slightly so that the resulting disk is immersed. Then, use [Fe, 2.10.27] to
conclude that there exists such a perturbation that intersects C in a finite set of
points, none of which are double points of the immersion. (The reference to Fed-
erer’s book is, in the present context, the plausible assertion that a set of Hausdorff
dimension 2 in a 4-manifold will have finite intersection with almost every fiber
of a fibration over a 2-dimensional disk.) A small disk in D centered in σ′−1(C)
will contain only one such point, so it is enough to establish the limit Θ(σ) for an
embedded disk which intersects C only once, in its interior. The existence of this
limit follows now by the argument which proves assertion (1) of Proposition 5.6.
The proof that Proposition 5.6’s limit m is an integer proves that this I(σ) is an
integer here too. The fifth assertion of (6.1) is obtained from Proposition 5.6.

Proof of Theorem 1.3. It follows from Proposition 6.1 and Lemma 6.2 that there is
a compact, complex curve Σ and a pseudo-holomorphic map ϕ : Σ→ X such that
ϕ(Σ) = C with C from (5.6). By passing to a multiple covering over components
of Σ (if necessary), one can arrange for ϕ∗[Σ] to equal the Poincaré dual of c1(E).

With the preceding understood, the theorem is proved with a demonstration
that the given sets {Ωi} intersect C. For this, take i and note that Ωi ∩U(N) 6= ∅
for all N . Since Ωi is closed, Ωi is therefore compact, so Ωi ∩ (

⋂
N U(N)) 6= ∅.

Thus, Ωi ∩ C 6= ∅.

(b) Continuity. In this and all subsequent subsection, the set C ⊂ X will be as
described in Proposition 6.1. This section begins the proof of Proposition 6.1 by
establishing a preliminary regularity result for C. Lemma 6.3, below, summarizes.
The statement of the lemma requires a short digression to discuss some features of
complex Gaussian coordinates.

To begin the digression, recall that complex Gaussian coordinates at a point
x ∈ X are, first of all, Gaussian coordinates (x1, x2, x3, x4) written as (w0 = x1 +
ix2, w1 = x3 + ix4) for C2 = R4. They are constrained so that ω|x = ω0 =
i
2 (dw0 ∧ dw∗0 + dw1 ∧ dw∗1). The set of complex coordinates at x has naturally the
structure of a principal U(2) bundle over a point. (As x varies over X , one obtains
the J-induced principal U(2) bundle reduction of the orthonormal frame bundle of
X .)

Note that any two such complex coordinates at x define the same complex struc-
ture J0 on C2. (This is the restriction of J to the tangent space to X at x.) In
any event, there is an unambiguous notion of a complex line through the origin,
a notion which is defined independently of the choice of the complex coordinates.
However, each complex coordinate system determines a unique complex line, the
one where w1 = 0.

At this point, recall that CP1 parameterizes the space of complex lines through
the origin in C2. The map from complex Gaussian coordinate systems to complex
lines is simply the projection U(2) → U(2)/(U(1) × U(1)) = CP1. With the pre-
ceding understood, a complex Gaussian coordinate system (w0, w1) will be called
compatible with a given complex line if said line is given by the equation w1 = 0.

Lemma 6.3. Let x ∈ C. There exists a full measure subset of CP1 for which any
compatible, complex Gaussian coordinates (w0, w1) centered at x has the following
property: There are numbers ρ > 0 and ε ∈ (0, ρ), and there is a positive integer m.
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Given this data, let D ≡ {ζ ∈ C : |ζ| < ρ} and let D′ ⊂ D denote the concentric
disk with radius ε. Then, Θ from Lemma 5.4 is defined on D ×D′. And, there is
a continuous map, Φ, from D′ to the space of unordered m-tuples of points in D
such that

Θ−1(C) = {(ζ, w) : w ∈ D′ and ζ ∈ Φ(w)}.(6.2)

(The space of unordered m-tuples of points in D is topologized as the quotient
of ×mD by the obvious action of the symmetric group on m letters. This space
has the structure of a stratified space (with smooth strata). The top dimensional
stratum has all m distinct points; the smallest dimensional stratum has all m points
coincide, it is a copy of D.)

The result is a direct consequence of the next two lemmas:

Lemma 6.4. Let ρ0 and Θ be as in Lemma 5.4. Let x ∈ C and, for positive
ρ < ρ0, let {Dw} be as in (5.11). Suppose that C ∩ Θ(D0) = x. Then there exists
ε > 0 such that C ∩Dw is a finite set of points if |w| < ε.

To put this lemma in context, recall that Lemma 5.4 associates to each complex
Gaussian coordinate system centered at x a number ρ > 0 and a map Θ. Now,
consider

Lemma 6.5. Let x ∈ C. There is a set of full measure in CP1 whose compatible,
complex Gaussian coordinates are such that Θ(D0) ∩ C is a finite set of points.

The proof of this lemma requires a preliminary digression to discuss a pertur-
bation result about pseudo-holomorphic disks through a fixed point. To begin the
digression, consider a point x ∈ X and some complex Gaussian coordinates (w0, w1)
centered at x. For ρ > 0, let E → CP1 denote the radius ρ disk bundle in the com-
plex line bundle with first Chern class −1. With the coordinates (w0, w1) chosen,
this bundle E has a natural identification with the space of pairs (ζ,Π), where Π
is a complex line and where ζ is a point on Π.

In general, a complex line Π as above will not be J-pseudo-holomorphic (except
at the origin). With this understood, consider:

Lemma 6.6. There exist constants z and ρ0 > 0 with the following significance:
Fix ρ < ρ0 and let Eρ ⊂ E → CP1 denote the disk subbundle of pairs (ζ,Π) with
|ζ| < ρ. There exists a smooth map Θ0 : Eρ → C2 with:

(1) For each κ ∈ U0, the map Θ0 : Eρ|κ → C2 is pseudo-holomorphic.
(2) Θ0 maps the zero section 0 to 0 and Θ0 embeds Eρ − 0.

(3) For each κ ∈ CP1, the disk Θ0(Eρ|κ) is tangent to Πκ at the origin.
(4) The second derivatives of Θ0 are bounded by z.

Proof of Lemma 6.6. Mimic the proof of Lemma 5.8.

With Lemma 6.6 in hand, consider the

Proof of Lemma 6.5. Take x ∈ C and construct the map Θ0 as described in Lemma
6.6. Refer to [Fe, 2.10.27] to conclude that for each positive integer N , there is
a subset of κ ∈ CP1 of full measure with the property that Θ−1

0 (C) intersects
{ζ ∈ Eρ|κ : |ζ| > N−1} as a finite set. Finally, note that a countable union of sets
of measure zero has measure zero.
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Proof of Lemma 6.3 (assuming Lemmas 6.4 and 6.5). Suppose that x ∈ C and
complex Gaussian coordinates are chosen (centered at x) so that Θ(D0) is defined
for some ρ > 0. (There exists a full measure set of these according to Lemma 6.5.)
Then x is an isolated point of C ∩Θ(D0) which means that there exists ρ′ ∈ (0, ρ)
such that x is the only point of intersection between C and the Θ image of the disk
D′0 ⊂ D0 with radius ρ′ and center 0. Now, let D′w ⊂ Dw denote the concentric disk
with radius ρ′. Thus, by Lemma 6.4, the intersection of C with Θ(D′w) contains no
more than m ≡ I(Θ|D′0) points. Furthermore, I(·) assigns a positive integer to each
such point and the sum of these integers must equal m (see (6.1)(4) and (6.1)(5)).
This gives the map Φ. The continuity of Φ is a consequence of the fact that C is
closed.

The remainder of this subsection is occupied with the

Proof of Lemma 6.4. Because C is compact, given δ ∈ (0, ρ), there exists ε > 0
with the following significance: Let D′w ⊂ Dw denote the concentric disk of radius
δ. Then C ∩ Θ(Dw) ⊂ Θ(D′w). And, (6.1)(4) and (6.1)(5) insure that C ∩ Θ(D0)
has no more than m ≡ I(Θ|D0) components. Suppose, however, that there were,
for some w with |w| small, some m + 1 points in this intersection. The plan is to
generate a contradiction from this assumption. The contradiction is obtained by
constructing an admissible map of a disk into X which has the following properties:
First, it is a perturbation of Θ(|Dw ) (through admissible disks). Second, its image
intersects C in embedded sub-disks which are pseudo-holomorphic. Finally, its
image intersects C in at least m+ 1 components. Then, (6.1)(2) will disagree with
(6.1)(4) and (6.1)(5) about the value of I(·) on this embedding, thus voiding the
initial assumption.

To begin, let d denote the diameter of the largest component of C ∩Θ(Dw). By
assumption, d > 0 and, given ε > 0, there exists δ > 0 such that when |w| < δ then
d < ε. One can then find a subdisk D′ ⊂ Dw of radius ρ1 with 4d < ρ1 < 24m+4 · d
and with the following property: Let D′′ ⊂ D′ denote the concentric disk of radius
1
4ρ1. Then C ∩Θ(D′) ⊂ Θ(D′′) and this set contains m+ 1 points whose minimal

mutual distance apart is at least d
m+2 . Denote these points as (ζi, u(ζi)), where

u : D0 → C is a complex valued function with ‖u − w‖ ≤ z · ρ2 (see (5.15) and
Lemma 5.4). No generality is lost (and notation is simplified) by assuming that the
center of D′ is the origin and that

|ζi| >
d

4(m+ 2)
.(6.3)

(If this condition is not satisfied, translate the origin of C.)
Note that Θ|D′ is admissible, and I(Θ|D′) ≤ m. With this understood, the plan

is to find an admissible, pseudo-holomorphic perturbation of Θ|D′ which intersects
C in at least m+1 components. (This perturbation will go through each (ζi, u(ζi)).)
The perturbation in question will have the form of q in (5.10) with

f(ζ) ≡ η ·
∏
i

(ζ − ζ′i)(6.4)

for suitable choices of η and {ζ′i}. (Thus, η ≡ 0 is the unperturbed disk.)
To see how (6.4) fits into the strategy, note that the parameters {ζ′i} will be

chosen to insure that the perturbed disk goes through each (ζi, u(ζi)). Meanwhile,
the parameter η will be chosen to insure that the intersection of the perturbed disk
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with C is discrete. The point is that the disks defined by differing η in (6.4) will
be seen to intersect in a discrete set (courtesy of Aronszajn’s unique continuation
principle [Ar].) With this understood, a basic measure theoretic fact [Fe, 2.10.27]
will insure that there are η’s arbitrarily close to zero for which the corresponding
disk has discrete intersections with C. By the way, Lemma 5.5 guarantees that the
embedded disk for any sufficiently small η is defined by an admissible map which is
homotopic to Θ(D′) via an admissible homotopy. Thus I(Θ|D′) is the same as that
for the embedding defined by any sufficiently small η, which is larger than m—a
contradiction.

To choose these parameters, remember that the set {ζ′i} is chosen to make

f(ζi) + τ(ζi) = 0(6.5)

for all i. With η fixed (for the time being) with small norm, (6.5) can be thought of
as an equation for the set {ζ′i} and the plan is to search for a solution of the form
ζ′i = ζi + µi with each µi very small. For this purpose, remark that (6.5) implies
that when η and µ ≡ {µi} have small norm, then µ obeys∑

j

∂f

∂ζ′j
(ζi) · µj + τ(ζi) +N (µ) = 0,(6.6)

where N is the remainder term in an appropriate Taylor’s expansion. Furthermore,
Lemma 5.5 allows for the following estimate on τ(ζi) and N :

(1) |τ(ζi)| ≤ cm|η|dm+1,

(2) |N (µ)| ≤ cm|η|(dm−2|µ|2 + dm|µ|),

(3)

∣∣∣∣∂N∂µi
∣∣∣∣ ≤ cm|η|(dm−3|µ|2 + dm−2|µ|).

(6.7)

Here, cm ≤ zm for some constant z. (Remember: 4d ≤ ρ1 ≤ 24m+4d.)

Meanwhile, note that the matrix Mij ≡ ∂f
∂ζj

(ζi) is diagonal with its i’th eigen-

value equal to η
∏
j 6=1(ζi − ζj). Thus, the eigenvalues of Mij have absolute value

greater than

1

cm
|η|dm−1.(6.8)

The contraction mapping theorem with (6.7) and (6.8) finds dm > 0 (which
depends on m) such that when d < dm and |η| < dm, then there is a unique small
solution µ ≡ µ(η) to (6.6) with the property that

|µ| ≤ c′md2.(6.9)

Here, c′m is a constant which depends on m.
Thus, for each choice of (small) η, the preceding constructs a map ση : D′ → X

(given by (5.10)) which is a pseudo-holomorphic embedding. The next task is to
examine how these ση depend on the parameter η. In particular, the claim is that
for sufficiently small η and η′, the images of ση and ση′ intersect in a discrete set.
Here is the proof: Consider the map, e0, of a small disk in C into C which sends
η to the w1 coordinate of ση(0). (The w0 coordinate of ση(0) is 0.) This map is
smooth (courtesy of Lemma 5.5). The value of this map at η = 0 is w. And, its
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differential at 0 sends λ ∈ C to

λ ·
∏
j

(−ζ′j) +O(cmd
m+1)|λ|.(6.10)

The error term here follows from Lemma 5.5 too. Thus (6.3) and (6.10) insure that
the differential of the map e0 is surjective at η = 0. This means, in particular, that
the map e0 is a diffeomorphism onto its image on a small disk U ⊂ C containing 0.
So, if η and η′ are distinct points in U , the maps ση and ση′ do not share the same
range. Thus, by Aronszajn’s theorem [Ar], the images of these two maps intersect
only at finitely many points.

As remarked above, this last fact implies (with [Fe, 2.10.27]) that there is a full
measure subset U ′ ⊂ U of points η for which ση(D′) ∩C is discrete.

(c) Lipschitz. The next step in Proposition 6.1’s proof argues that the map Φ in
Lemma 6.3 is Lipschitz almost everywhere. However, to make the precise statement,
it is necessary to digress for the introduction of the notion of a “stable direction”
for a point in C. To begin the digression, take x ∈ C and introduce the map Θ0 of
Lemma 6.6. According to Lemma 6.5, there exists ρ > 0 and a full measure subset
Ω ⊂ CP1 with the property that when κ ∈ Ω, then Θ0(Eρ|κ) intersects C near x in
a finite set.

Lemma 6.7. The set Ω as defined above is open.

Proof of Lemma 6.7. If κ ∈ Ω, there exists ρ1 > 0 such that the intersection
of C with Θ0(Eρ1 |κ) consists solely of x. Since C is closed, there exists ε1 >
0 with the property that the intersection of C with Θ0(Eρ1 |κ′) is contained in
Θ0(Eρ1/2|κ′) when dist(κ′, κ) < ε1. Indeed, given δ > 0, there exists ε > 0 such that
diam(C ∩Θ0(Eρ1 |κ′)) < δ when dist(κ′, κ) < ε. Thus, one can argue as in the proof

of Lemma 6.4 to find an open neighborhood of κ in CP1 where C ∩ Θ0(Eρ1 |κ′) is
discrete.

With Ω as above, (6.1)(4) and (6.1)(5) assign to each κ ∈ Ω a positive integer,
nκ(x), which is the value of I(·) on the restriction of Θ0 to Eρ|κ for all sufficiently
small ρ > 0. It then follows from Lemma 6.7 that

nκ′(x) ≤ nκ(x)(6.11)

if κ′ is sufficiently close to κ. With the preceding understood, say that κ is a stable
direction for x if κ ∈ Ω and if nκ′(x) = nκ(x) for all κ′ in some neighborhood of κ.
Let Ω ⊂ Ω denote the set of stable directions. By definition, Ω ⊂ Ω is open. Thus,
Ω ⊂ CP1 is open. This set Ω is also dense in CP1. This follows from (6.11) and the
fact that there is a finite set of positive integers less than any given nκ(x). (By the
way, let n(x) denote the infimum of {nκ(x) : κ ∈ Ω}. This is an infimum over a set
of positive integers, so it is achieved by some κ ∈ Ω. Such a κ is a stable direction
for x.)

End the digression. Here is a Lipschitz assertion for the map Φ in Lemma 6.3:

Lemma 6.8. Let x ∈ C and let (w0, w1) be the usual complex, Gaussian coordi-
nates at x but with the constraint that κ0 ≡ [1, 0] ∈ CP1 is a stable direction. Write
C near x as in (6.2). Then, there exists c ≥ 0 such that

sup
ζ∈Φ(0)

{dist(ζ,Φ(w))} ≤ c · |w|.(6.12)
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Proof of Lemma 6.8. As κ0 ∈ Ω, there exists ρ1 > 0 such that the intersection of C
with Θ0(Eρ1 |κ0) occurs only at x. And, there exists ε1 > 0 such that if dist(κ0, κ) <
ε1, then the intersection of C with Θ0(Eρ1 |κ) is contained in Θ0(Eρ1/2|κ). Thus,
for such κ, I(Θ0(Eρ1 |κ)) is well defined and equals I(Θ0(Eρ1 |κ0)) which is nκ0(x).
However, as κ0 is stable, there exists ε2 ∈ (0, ε1) such that if dist(κ0, κ) < ε2,
then nκ(x) = nκ0(x) also. Since I(Θ0(Eρ1 |κ)) ≥ nκ(x) (because of (6.1)(4) and
(6.1)(5)), one is forced to conclude that C ∩ Θ0(Eρ1 |κ) = x when dist(κ, κ0) < ε2.
This implies (6.12) where c = O(ρ1/ε2).

Remark that this lemma asserts that Φ is Lipschitz at the point x, but it does
not say anything about nearby points. To consider this issue, introduce the notion
of “multiplicity” of a point in C. Here, the multiplicity, n(x), of x ∈ C is defined to
be the infimum of the positive integers nκ(x) as κ varies over the set Ω. With the
preceding understood, say that a point x ∈ C is regular when n(x) ≤ n(x′) for all
x′ in some open neighborhood in C of x. (For example, x is stable when n(x) = 1.)

Lemma 6.9. The set of regular points in C is open and dense. Furthermore, if x
is a regular point of C, then there is a complex Gaussian coordinate system centered
at x and a constant c with the following properties :

(1) C near X has the form of (6.2).
(2) The map Φ in (6.2) maps a neighborhood D′ ⊂ D of 0 into the stratum of the

space of unordered m-tuples where all m points coincide.
(3) The map Φ is Lipschitz on D′ in the sense that

|Φ(w) − Φ(w′)| < c|w − w′|

for all pairs w,w′ ∈ D′.

The following is an immediate corollary of the preceding lemma:

Lemma 6.10. There is an open, dense subset of C which has the structure of a
Lipschitz submanifold of X.

(There is a notion of a 2-dimensional, rectifiable set ; this being a set with finite 2-
dimensional Hausdorff measure which is the union of a countable number of disjoint
Lipschitz submanifolds with a set having zero 2-dimensional Hausdorff measure.
(See, e.g., [Fe] or [La].) Lemma 6.10 implies that C is rectifiable.)

The proof of this lemma is similar in most respects to that of Lemma 6.8, so
the discussion will be brief. The remainder of this subsection is occupied with this
discussion.

Proof of Lemma 6.9. There are six steps to the proof.

Step 1. This step constitutes another digression to consider a family of pseudo-
holomorphic disks which contains Lemma 5.4’s family {Θ(Dw)} and Lemma 6.6’s
family {Θ0(Eρ|κ)} as subfamilies. For this purpose, introduce π : FU → X , the
principal U(2) reduction of the principal SO(4) bundle of orthonormal frames in
TX . This principal bundle parameterizes the complex Gaussian coordinate systems
centered at points in X .
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Given ρ > 0, let D ⊂ C denote the radius ρ disk with center 0. Lemma 5.5 gives
ρ > 0 and a smooth map Θ : D ×D × FU → X with the following properties:

(1) Θ(·, ·, u) are Lemma 5.4’s maps Θ as defined using the complex

Gaussian coordinate system which is defined by u (and so

centered at x = π(u)).

(2) Θ(D0, 0, u) = Θ0(Eρ|κ), where Θ0 is from Lemma 6.6 as applied to

the point π(u) and where κ is the complex line given by w1 = 0 in

the complex Gaussian coordinates defined by u.

(6.13)

Remark that if x ∈ X is fixed, with a trivialization of FU on a ball B ⊂ X
centered at x, then Θ can be restricted to define a smooth map (also called Θ) from
D×D×U(2)×B into a neighborhood of x in X . Furthermore, if κ ∈ CP1 is fixed,
then the fibration U(2)→ CP1 has a section, s, on a neighborhood Uκ ⊂ CP1 of κ.
Using this section, the map Θ defines a smooth map,

Θ1 : D ×D × Uκ ×B → X.(6.14)

Step 2. This step is a preliminary one to consider properties of Θ1with respect to
C. So, suppose that x ∈ C and that Θ1 is defined near x. First of all, there is a
direction κ0 ∈ CP1 which is a stable direction for x and is such that nκ0(x) = n(x).
Since κ0 is a stable direction for x, the intersection of C with Θ1(·, 0, κ0, x) is a
finite set, and by choosing ρ smaller if necessary, this set can be assumed to be {x}.
The stability of κ0 for x also implies that the intersection Θ1(·, 0, κ, x) ∩ C = {x}
for all κ in some open neighborhood in CP1 of κ0.

If κ is close to κ0, and w is close to 0, and x′ is close to x, then Θ1(·, w, κ, x′)−1(C)
is a finite set of points, and this set is contained in the concentric subdisk in D of
radius ρ/2. (This is proved by repeating, virtually verbatim, the proof of Lemma
6.4.) In fact, given δ > 0, one can be assured that Θ1(·, w, κ, x′)−1(C) is contained
in the radius δ disk about 0 when w is sufficiently close to 0, κ sufficiently close to
κ0, and x′ sufficiently close to x. With the preceding understood, it follows that
I(Θ1(·, w, κ, x′)) is well defined and is equal to n(x) if κ is close to κ, and w is close
to 0, and x′ is close to x. This last fact plus (6.1)(4) and (6.1)(5) together imply
that Θ1(·, w, κ, x′)−1(C) contains no more than n(x) points if κ is close to κ0, and
w is close to 0, and x′ is close to x.

Step 3. Suppose that x ∈ C is regular. This step proves that Θ1(·, w, κ, x′)−1(C)
contains precisely one point if w is near 0, and κ is near κ0, and x′ is close to x. This
follows from the assumed regularity of x. Indeed, if this set contains two points, say
{x1, x2}, then both will be close to x. And, there is some κ′ ∈ CP1 which is close
to κ such that x2 ∈ Θ1(·, 0, κ′, x1). (Argue here as in the proof of Lemma 6.8, and
with the help of (6.13).) The point is, the image disk of Θ1(·, 0, κ′, x1) contains two
points of C. This is compatible with its I value being n(x) only if n(x1) < n(x).
The latter contradicts the assumed regularity of x.

Step 4. Suppose x ∈ C is regular. Then, the fact that the set Θ(·, w, κ, x)−1(C) is a
single point when w is near 0 and κ is near κ0 implies that the map Φ from Lemma
6.3 (as defined using a complex Gaussian coordinate system which is compatible
with κ0) is Lipschitz near the origin. The proof mimics the proof of Lemma 6.8
(using (6.13) and (6.14) to generalize Lemma 6.6) and is omitted.
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Step 5. This step establishes that the set of regular points in C is open. Indeed, this
follows from the claim that if x is regular, then n(x) = n(x′) when x′ is sufficiently
close to x. The latter follows directly from the results of Steps 2 and 3.

Step 6. This step proves that the regular points are dense. Indeed, let x ∈ C and let
V ⊂ C be any open neighborhood of x. Consider the function n(·) on V . This is a
positive integer valued function, so it must achieve its minimum. Such a minimizer
is regular.

(d) C is pseudo-holomorphic near regular points. It has now been estab-
lished that the set C has the structure of a Lipschitz submanifold of X at the open
and dense set of regular points. This subsection establishes

Lemma 6.11. Let x ∈ C be a regular point. There is a neighborhood of x in C
which is an embedded, pseudo-holomorphic disk.

The remainder of this subsection is occupied with the

Proof of Lemma 6.11. The proof requires six steps.

Step 1. Fix a regular point x ∈ C. Lemma 6.9 provides complex Gaussian coor-
dinates centered at x with the following properties: Introduce Lemma 5.4’s map
Θ as defined by a complex Gaussian coordinate system centered at x. This coor-
dinate system should be chosen so that the complex line κ0 where w1 ≡ 0 obeys
nκ0(x) = n(x). With Θ understood, note that Θ−1(C) has the form (Φ(w), w)
when w is in some open neighborhood D′ ⊂ D of the origin. Here, Φ : D′ → D is
a Lipschitz map sending 0 to 0.

There is some simplification of notation when C is considered in the complex
Gaussian coordinate system instead of the image of this coordinate system by Θ.
With this purpose in mind, note that because Φ is Lipschitz, there exists a disk
D′′ ⊂ D′ centered at 0 with the property that when w ∈ D′′, then each Dw

intersects C in a single point Φ1(w). And, Φ1(·) defines a complex valued, Lipschitz
map from D′′ to D.

Step 2. Lemma 6.11 is proved by demonstrating that Φ1 is holomorphic at x = 0.
One can then let x vary to conclude that C is an embedded, pseudo-holomorphic
submanifold at every stable point.

To prove that Φ1 is holomorphic at 0, introduce the complex valued function
∂Φ1 : D′′ − 0→ C by the rule

∂Φ1(w) ≡ Φ1(w)

w
.(6.15)

Since Φ1 is Lipschitz, this map is bounded on D′′ − 0. The point is that Φ1 is
holomorphic at 0 if and only if ∂Φ1 has a continuous extension to D′′.

With the preceding understood, suppose that ∂Φ1 does not extend continuously
over to the whole of D′. This supposition is shown below to contradict the assump-
tions in (6.1). Indeed, the assumption that ∂Φ1 is not continuous at 0 will allow
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for a map of a disk in X which has the following properties:

(1) σ is admissible.

(2) σ is homotopic (via a homotopy where the inverse image of C is

compact) to the image of the σ0 which sends ζ to Θ(ζ2, 0).

(3) I(σ) > I(σ0).

(6.16)

Such a map σ is prohibited by (6.1) thus voiding the assumption that ∂Φ1 has no
continuous extension over D′. (Note that σ0 is not, generically, 1-1.)

Step 3. To construct the map σ, consider that if ∂Φ1 is not continuous at 0, then
there are sequences {a1i} and {a2i} in D′−0 which converge to 0 with the following
properties:

(1) lim
i→∞

∂Φ1(a1i) ≡ c1∞ exists.

(2) lim
i→∞

∂Φ1(a2i) ≡ c2∞ exists.

(3) c1∞ 6= c2∞ .

(4) |c2∞ | ≥ |c1∞ |.

(6.17)

There is no generality lost in assuming that

2δ > |∂Φ1(a1i)− ∂Φ1(a2j)| > δ(6.18)

for some δ > 0 and all pairs (i, j).
With the preceding understood, choose i large and set a1 ≡ a1i and c1 ≡

∂Φ1(a1i). Choose j � i so that a2 ≡ a2j obeys

|a2| � |a1|.(6.19)

Set c2 ≡ ∂Φ1(a2j).
Consider the map σ1 : C→ C2 which sends ζ to (w0(ζ), w1(ζ)), where

(1) w0(ζ) ≡
(
c1 − c2
a1 − a2

+ η2

)
· ζ2 +

(
c2a1 − c1a2

a1 − a2
+ η1

)
· ζ + η0

+ η · ζ(ζ − a1)(ζ − a2),

(2) w1(ζ) ≡ ζ.

(6.20)

Here, η and η0,1,2 are small constants which will be chosen shortly. (Note that when
ηi are all zero, then the image of σ1 intersects C at three or more points as σ1’s
image hits (0, 0) and (Φ1(a1), a1) and (Φ1(a2), a2). This is the point of choosing σ1

in this way. The map σ1 will shortly be perturbed to be pseudo-holomorphic, and
then the η’s will be chosen to insure that the resulting map has finitely many, but
at least three intersections with C.)

Step 4. As remarked above, σ1 is not pseudo-holomorphic. Consider perturbing
this map to a pseudo-holomorphic map. To be precise, the plan is to find a pseudo-
holomorphic σ which sends ζ to

σ(ζ) ≡ (w0(ζ) + τ, ζ),(6.21)

where τ is a smooth function on the complex plane which obeys (5.11) using f ≡
w0(ζ) and using

ρ ≡ R|a1|(|c2|+ 1)

δ
(6.22)
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for a fixed R ≥ 100. In particular, choose R to be 100 or more times the Lipschitz
constant of Φ at 0. In considering (5.11), take each

(1) |ηi| < s0 · ρ2−i.

(2) |η| < ρ4.
(6.23)

Here s0 is a constant which depends on the choice of R and on the parameters δ
and |c2| but not on {a1, a2}.

The function τ is found with the help of Lemma 5.5. In this regard, remember
that w0(ζ) plays the role of the polynomial f ; and with this understood, note that

‖χρw0‖ ≤ s1 · ρ(6.24)

when (6.23) is satisfied. Here, s1 depends on the parameters R, δ and |c2|, but not
on {a1, a2}.

Remember that R and |c2| and δ−1 are uniformly bounded, while |a1| can be
taken as small as desired. Thus, Lemma 5.5 can be invoked when |a1| is sufficiently
small, less than some s2 > 0 which is provided by Lemma 5.5 and the values of R, δ
and |c2|. Thus, with |a1| small, Lemma 5.5 describes a solution τ to the f ≡ w0(ζ)
version of (5.11).

Step 5. The function τ is implicitly a function of the parameters η and η0,1,2. These
parameters will now be fixed by the following requirements:

(1) σ−1(C) is a discrete set.

(2) σ(D) ∩ C contains x and Θ(Φ(a1), a1) and Θ(Φ(a2), a2).
(6.25)

Here is the strategy for solving the preceding constraints: For fixed but small η (as
in (6.23)), solve the following equations for (η0, η1, η2):

(1) η2a
2
1 + η1a1 + η0 + τ(a1) = 0.

(2) η2a
2
2 + η1a2 + η0 + τ(a2) = 0.

(3) η0 + τ(0) = 0.

(6.26)

If these constraints are satisfied, then so is (6.25)(2). It is an exercise with the
implicit function theorem and Lemma 5.5 to prove that (6.26) has a unique solution
obeying (6.25)(1) when ρ is small. This solution will then be an implicit function
of the parameter η. With this understood, consider the map, h, from the radius
ρ3 disk in C to C which sends η to value of w0(ζ) + τ(ζ) at a point ζ ≡ a1

2 . It is
a second exercise with Lemma 5.5 and the implicit function theorem to prove that
the differential of h at η = 0 is surjective. This implies (with Aronszajn’s unique
continuation theorem [Ar]) that the images of the maps σ for any two different
values of η (near 0) intersect in a discrete set. One can conclude from this last fact
and [Fe, 2.10.27] that there is a full measure set of η’s (near η = 0) for which the
map σ intersects the curve C in a discrete set.

Step 6. Choose η now so that (6.23)(2) is obeyed and so that σ−1(C) is discrete.
The next task is to compute the value of I(σ). As indicated at the outset, there
are two different ways to compute this number. For the first, remark that when
|ζ| ≥ 3ρ

4 , then

|w0 + τ | > R

2
|ζ|.(6.27)
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Since R is chosen to be at least 100 times the Lipschitz constant of Φ, one can
conclude that the map σ is admissible and that σ is homotopic as described in
(6.16)(2) to the map σ0 which sends ζ to Θ(ζ2, 0). This implies (with (6.1)(3)) that
I(σ0) = 2 · n(x).

On the other hand, the map σ is a pseudo-holomorphic embedding of a disk
which intersects C in a finite set of points. Each such point contributes a positive
integer to I(σ) because of (6.1)(4) and (6.1)(5). In particular, σ−1(C) contains at
least 3 points. Thus, for example, if n(x) = 1, then I(σ) ≥ 3 which is greater than
the value 2 computed in the previous paragraph. In the case where n(x) > 1, then
I(σ) ≥ 3 · n(x) and here is why:

Lemma 6.12. Let x ∈ C, and let σ : D → X be a pseudo-holomorphic embedding
of a disk whose image intersects C only at x. Then I(σ) ≥ n(x).

The proof below of Lemma 6.12 completes the proof of Lemma 6.11.

Proof of Lemma 6.12. Without loss of generality, suppose that σ−1(x) = 0. Be-
cause of (6.1)(4), I(σ) = I(σ′), where σ′ is the restriction of σ to any subdisk
D′ ⊂ D which contains the origin. Remember this fact.

The simplest case occurs when the tangent plane κ to the image of σ at x is a
stable direction. In this case Lemma 6.8 and (6.1)(2) imply that the contribution to
I(σ) from x is the same as nκ(x), which is at least as big as n(x). Indeed, because
of Lemma 6.8, the restriction of σ to a very small radius disk about 0 (say of radius
ρ > 0) will be homotopic to Θ0(Eρ|κ) via a homotopy with compact C-inverse.

When κ is not a stable direction, restrict anyway to a very small radius disk
D′ ⊂ D which contains the origin. One can suppose that σ|D′ is given in some
complex Gaussian coordinate system centered at x by (5.10) with f ≡ τ ≡ 0 and
with u obeying u(0) = 0 and du|0 = 0. With this understood, consider perturbing
σ|D′ by adding f(ζ) ≡ η0 + η1 · ζ and Lemma 5.7’s τ to (5.10). Here, η0 and η1

should be taken very small. Furthermore, with η1 chosen, one can use the implicit
function theorem (with the help of Lemma 5.5) to choose η0 as a smooth function
of η1 so that the perturbed map, q, obeys q(0) = 0. Since η0 is now a function of

η1, the assignment to η1 of the ∂(f+τ)
∂ζ |ζ=0 defines a smooth map from a small disk

about 0 in C to C. The estimates in Lemma 5.5 show that the differential of this
map at η1 = 0 is surjective. Thus, there are arbitrarily small choices for η1 which
make the tangent plane κ′ to q at x a stable direction.

With the preceding understood, remark that because C is closed and only inter-
sects σ(D′) at x, the map q will be admissible for all sufficiently small |η1|. And,
for sufficiently small |η1|, the map q will be homotopic to σ|D′ by a homotopy with
compact C-inverse image. This implies I(q) = I(σ). However, q(D′)∩C contains at
least the point x. And one can argue (as in the proof of Lemma 6.4) that q(D′)∩C
is a finite set. Thus, I(q) is at least as big as the I value of q’s restriction to some
smaller radius disk D′′ ⊂ D′ whose q image intersects C only at x. If η1 is chosen
so that the tangent plane to q at 0 is a stable direction, then, as noted previously,
this I value is at least n(x). Thus I(σ) = I(q) ≥ n(x) as claimed.

(e) The singular points. A point x ∈ C which is not regular will be called
singular. Here is the first basic fact about singular points:

Lemma 6.13. There are finitely many singular points of C.

The remainder of this subsection is occupied with the proof of this lemma.
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Proof of Lemma 6.13. The proof requires ten steps.

Step 1. To begin, fix attention on a singular point x ∈ C. Choose a complex,
Gaussian coordinate system centered at x which is compatible with a stable di-
rection κ for which nκ(x) = n(x). Introduce the map Θ of Lemma 5.4. This map
defines complex coordinates (ζ, u) on a neighborhood of x in X . (These coordinates
are generally not the complex Gaussian coordinates as the disks u = constant are
pseudo-holomorphic.) Note that these (ζ, u) coordinates are not uniquely defined
by Lemma 5.4; and it proves convenient to exploit the freedom in choosing (ζ, u)
coordinates to put the almost complex structure J in a nice form.

To begin this task, consider the almost complex J in any Θ coordinates (ζ, u) on
D×D′. Because the disks of constant u are pseudo-holomorphic, J must decompose
as follows with respect to the (product induced) splitting T (D×D′) = TD⊕TD′ ≈
R2 ⊕ R2:

J =

(
a b
0 a′

)
,(6.28)

where a, a′ and b are 2× 2 matrix valued functions on D ×D′ which obey

(1) a · a = a′ · a′ = −I.
(2) a · b+ b · a′ = 0.

(3) aaT|0 = a′a′T|0 = I.
(4) b|0 = 0.

(6.29)

Here, I is the identity matrix, and the superscript T denotes the transpose.
It proves useful to refine this choice of coordinates by imposing further con-

straints on the matrices a, a′ and b. To begin, remark that by taking a smaller
diameter D′ if necessary, Lemma 5.4 provides a smooth map τ : D′ → R2 with the
following properties: First, τ(0) = 0. Second, the embedding of D′ into D × D′
which sends u to (τ(u), u) is pseudo-holomorphic. With the preceding understood,
change to the coordinates (ζ1 ≡ ζ + τ(u), u1 ≡ u). With these coordinates, the
u1 = constant disks are pseudo-holomorphic as is the disk ζ1 = 0. Thus, in the
(ζ1, u1) coordinates, J has the same form as in (6.28)–(6.29) and the matrix b obeys

b(0, ·) ≡ 0.(6.30)

A further change to (ζ2 ≡ g(ζ1, u) · ζ1, u2 ≡ g′(u1)) (for suitable smooth matrix
valued function g and map g′) can be made so that J in (6.28) obeys (6.29) and
(6.30) and also

a ≡
(

0 −1
1 0

)
and a′(0, ·) ≡

(
0 −1
1 0

)
.(6.31)

With the preceding understood, henceforth use (ζ, u) to denote (ζ2, u2). That
is, the (ζ, u) coordinates will always be chosen so that J obeys (6.29)–(6.31).

Step 2. Note that in the Θ coordinates (ζ, u) above, the set C has the form in (6.2)
where Φ is a continuous map from D′ into the space, Cn, of n-tuples of points
in C. Here n ≡ n(x). This step serves as a digression to describe this space.
To begin, observe that there are two natural analytic structures on Cn. For the
first, Cn has the structure of a stratified space, where a typical stratum is labeled
by an n-tuple L ≡ (n1, . . . , nn) of non-negative integers subject to the constraint∑
j j · nj = n. If L is such an n-tuple, use Cn,L to denote the corresponding
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stratum. Here, Cn,L corresponds to those n-tuples where there are n1 distinct
points, n2 coinciding pairs, n3 coinciding triples, etc. The top dimensional stratum
is labeled by L0 ≡ (n, 0, . . . , 0). The lowest dimensional stratum is labeled by
(0, 0, . . . , 1).

The stratum Cn,L0 is naturally diffeomorphic to (×nC−∆)/Sn, where ∆ is the
union of the subsets of ordered n-tuples with coinciding points, and where Sn is the
symmetric group on n letters. In general each stratum is a smooth manifold; here

Cn,L ≈ ×j(Cnj,L0).(6.32)

(Set C0,L0 ≡ point.)
There is a partial ordering to the strata which is defined as follows: Say that

L ≤ L′ if L is in the closure of L′. For this condition to hold, the corresponding
n-tuples of L and L′ must obey∑

j≥k
j · nj ≥

∑
j≥k

j · n′j for all k ∈ {1, 2, . . . , n}.(6.33)

Note that the codimension of the strata L is equal to 2 · (n−
∑
j nj).

The second picture of Cn comes by thinking of n-complex numbers as the roots
of an n’th order polynomial

ζn + v1ζ
n−1 + · · ·+ vn.(6.34)

The coefficients (v1, . . . , vn) identify Cn with Cn.
Note that if t ≡ (ζ1, . . . , ζn) is an n-tuple in Cn, then

vj(t) =
∑
σ

ζσ1 · · · ζσj ,(6.35)

where the sum is over all unordered subsets σ of j distinct elements in {1, . . . , n}.
In any event, (6.35) defines a standard, 1-1 onto map of Cn onto Cn. Note, as an
aside, that the tautological map from (×nC)−∆ into Cn is a smooth covering map.
Likewise, if L is any stratum, then the tautological map from ×j((×njC)−∆) into
Cn,L is also a smooth covering map.

In the Cn picture, each stratum Cn,L of Cn corresponds to a Zariski open subset
of some algebraic subset (defined by polynomial equations) of Cn. It is important
to note that in terms of the variables (ζ1, . . . , ζn) for Cn, these polynomials are
homogeneous and symmetric, but they are generally neither in terms of the vari-
ables (v1, . . . , vn) for Cn. For example, in the variables (ζ1, . . . , ζn),Cn,L0 is the
complement in Cn of the zero set of the discriminant function

∏
i6=j(ζi − ζj). But,

in the case where n = 2, this polynomial is written in terms of the v’s as set of the
equation v2

1 − 4v2 = 0.

Step 3. Let π : C → D′ denote the projection onto the second coordinate. (To
save notation here and henceforth in this subsection, C is identified with its inverse
image via Θ in D×D′. Thus, π−1(u) = Φ(u).) It has already been established that
there is a dense, open subset in C which has the structure of a complex manifold.
With this understood, Sard’s theorem gives a dense open subset D′0 ⊂ D with the
following properties:

(1) C0 ≡ C ∩ π−1(D′0) is a smooth, pseudo-holomorphic submanifold

of D ×D′.
(2) The projection π : C0 → D′0 is a covering map.

(6.36)
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With the preceding understood, it follows that Φ maps D′0 smoothly into Cn.

Step 4. Let f : Cn → C be a polynomial in the complex coordinates which is
symmetric and homogeneous as a function of the coordinates (ζ1, . . . , ζn). This
function is pulled back to D′ by Φ and so gives a complex valued function on D′.
(Denote this pull-back function by f also.) The purpose of this step is to show that
f ’s restriction to D′0 obeys a variant of the Cauchy-Riemann equations.

A digression is required to derive this equation. To start the digression, fix a
point w ∈ D′0. On a neighborhood U ⊂ D′0 of w, the map π : C → D′ is a trivial
covering map with some number m ≤ n sheets. Thus, there are some m smooth,
complex valued functions (ϕ1, . . . , ϕm) on a neighborhood of U ⊂ D′0 of w such
that the m sheets of C over U are the graphs of these functions. (Needless to say,
each ϕj maps into D.) It proves convenient to take m = n, and for this purpose,
remark that each sheet of C over U has an associated positive integer multiplicity,
this being the value of n(x′) for any x′ in said sheet. Note that the sum over the
m sheets of these multiplicities is equal to n. With the preceding understood, add
as many copies of ϕj as is the multiplicity of the jth sheet and then renumber the
resulting n functions from 1 to n.

Each sheet over U is a pseudo-holomorphic submanifold of D × D′. This im-
plies that ϕ ∈ {ϕj}nj=1 obeys a differential equation which is described as follows:

Think of ϕ as a complex valued function on a domain in R2, and let dϕ denote its
differential. Then, at a point u ∈ U , the function ϕ obeys the equation

dϕ+ i · a′ · dϕ+ b = 0.(6.37)

Here, a′ is evaluated at the point (ϕ(u), u), and b is a complex valued differential
whose real and imaginary parts are linear combinations of the components of the
2× 2 matrix b at the point (ϕ(u), u).

Because of (6.29) and (6.31), this last equation is obeyed if and only if its pro-
jection onto the (0, 1) part of the cotangent bundle of U is zero. Thus, (6.37) can
be replaced by an equation of the form

∂ϕ

∂u
+ s0(ϕ(u), u) · ∂ϕ

∂u
+ s1(ϕ(u), u) = 0,(6.38)

where s0 and s1 are smooth functions on D × U . Furthermore, both s0 and s1

vanish along 0× U . This follows from (6.30) and (6.31).
With the preceding understood, return now to the pull-back, f , of a complex

polynomial on Cn. Assume that as a polynomial in the variables (ζ1, . . . , ζn) for
Cn, this function is symmetric and homogeneous in each ζj of degree p ≥ 0. Then,
it follows from (6.38) that f obeys the equation

∂f

∂u
+ h · f = 0,(6.39)

where

h ≡ p ·
∑
j

1

ϕj

(
s0(ϕj , ·) ·

∂ϕj
∂u

+ s1(ϕj , ·)
)
.(6.40)

Remark that these last equations are not local to U , but make sense over the whole
of D′0.

Step 5. The investigations of f require an understanding of the function h in (6.40).
The following lemma summarizes:
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Lemma 6.14. The function h extends over D′ as an L2 function.

Proof of Lemma 6.14. First of all, both s0 and s1 are differentiable and s0(0, ·) =
0 = s1(0, ·), so the question is really about the behavior of∑

j

|dϕj |2.(6.41)

To compute the integral of (6.41) over D′, first remember that C has finite 2-
dimensional Hausdorff measure. This measure is the same as that of the regular
points of C. Because the latter subset is a pseudo-holomorphic submanifold, its area
is the same as the integral of the pull-back of the symplectic form. The integral of
the latter over π−1(U) can be expressed as an integral over U . Using (6.38) (with
the fact that ω ≈ ω0 in the Θ coordinates), one finds that the latter integral gives
a uniform bound for integral over U of (6.41). This implies that h is in L2(D′).

Step 6. Let D2 ⊂ D′′ denote the concentric disk whose radius is 1
2 that of D′. This

step decomposes f on D2 as

f = f0 · exp(v),(6.42)

where f0 is a bounded, holomorphic function and where v is an L2
1 function.

The function v is found by solving the equation ∂v
∂u = h. Standard estimates

with the Euclidean Laplacian on D′ find such a v which is square integrable with
square integrable first derivative. (The L2

1 norm of v can be assumed to be bounded
by a uniform multiple of ε · ‖h‖L2, where ε is the diameter of D′.)

To understand f0 in (6.42), remark that the Sobolev inequalities in dimension
2 constrain the singular behavior of an L2

1 function. In particular, let D1 ⊂ D′ be
the concentric disk with 3

4 the radius of D′. Then, for any real number λ, exp(λv)
is an L1 function on D1 (see, e.g., [Au, Theorem 2.46].) This last fact implies
that f0 ≡ exp(−v) · f is a square integrable function on D1 whose derivatives are
integrable. Furthermore, because of (6.39), f0 is holomorphic on the dense, open
subset D1 ∩D′0. This last fact implies that f0 is a bounded, holomorphic function
on the concentric disk D2 ⊂ D′.
Step 7. This step studies the zero set of f0 and of exp(v) in the disk D2. The case
of f0 is simple—being holomorphic, f0 has a finite number of zeros in D2 if it is
not identically zero. As for exp(v), the claim here is that exp(v) vanishes at most
on a countable set of points in D2. (This assumes that f0 is not identically zero.)
In the last step below, exp(v) will be shown to be non-vanishing.

Remark here that there is probably an argument like that which proves Lemma
6.9, which directly gives a pointwise bound on (6.41). The argument would pre-
sumably come by computing in two different ways the invariant I for some cleverly
chosen embedded, pseudo-holomorphic disks. Such a bound would imply directly
that v is bounded and so that exp(v) is never zero. Thus, such a bound would com-
plete the proof of Lemma 6.13 right here and obviate the need for the remainder of
the proof.

In any event, to prove the claim that exp(v) has countably many zeros, remark
that exp(v) vanishes at the points where v = −∞, so the issue here is the singular
set of the L2

1 function v. To study this set, first slice the closure of D2 by the line
segments with constant real(u). Then v restricts to almost every real(u) = constant
line segment as an L2

1 function. Second, note that v is bounded on almost every
real(u) = constant line segment. (An L2

1 function on a line segment is continuous.)
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Third, since f in (6.39) is continuous, the singular set of v is closed. Thus, v
is bounded on an open, dense set of real(u) = constant line segments. Fourth,
note that the complement of an open dense set in an interval is a countable set of
points. Thus, v is unbounded on at most a countable set of real(u) = constant line
segments. Finally, by replacing the real part of u by the imaginary part of u, one
can conclude that the singular set of v in D2 consists of at most a countable subset
of points.

Step 8. One can consider Steps 5–7 for the finite set {f} of polynomials which de-
lineate the various strata of Cn ≈ Cn. The conclusion is that each such polynomial
is either identically zero on D2 or else it vanishes on, at most, a countable set.
Thus, the singular set of C in D×D2 has, at most, countably many members. The
next two steps demonstrate that these zeros are finite in number, and that they are
determined by the f0 parts of the polynomials (with respect to the decomposition
in (6.42)). This is a “pull yourself up by your bootstraps” sort of argument. This
step outlines the argument.

The idea is based on the fact that most members of a countable set in C are
isolated. Thus, if one can demonstrate that a countable set has only finitely many
isolated members, then that set must itself be finite. In the case at hand, all but
finitely many of the zeros of the polynomials in the set {f} are due to the zeros of
the exp(v) parts in (6.42). Thus, if one can show that v is bounded near the image
in D2 of an isolated singular point, then one has shown that there are at most
finitely many such isolated singular points, and so finitely many singular points in
all. With the preceding understood, the strategy for the required bound on v is to
control (6.41) by exploiting knowledge of C near an isolated singular point.

Step 9. This step uses the isolated property of a singularity of C to obtain estimates
for the integral of (6.41) over small diameter disks in D2 near the singularity’s image
in D2.

To begin, consider a point u0 ∈ D2 whose inverse image via π : C → D2

contains only one singular point, x0, of C. (The argument in the general case is only
notationally more complicated, and is left to the reader.) Let D3 ⊂ D2 be a small
radius disk whose center is u0 and is such that π−1(D3) contains only one singular
point x0. Lemma 6.3 (and the discussion in the preceding steps) can be used to
describe a neighborhood in C of x0 as follows: A neighborhood is a union of some
number m ≤ n topologically embedded disks. Furthermore, the complement in this
neighborhood of x0 consists of disjoint, embedded, pseudo-holomorphic, punctured
disks with finite energy. (Remember that C has finite area.) Fix attention on one
such disk V . The projection π restricts to V −x0 as an m1 ≤ m fold covering map
of D3 − u0. This implies that there is a diffeomorphism ψ, from the punctured,
standard disk in C, onto V − x0 which composes with π to send a point η to
u0 + δ · ηm1 . Here δ > 0 is fixed. That is,

ψ(η) = (θ(η), u0 + δ · ηm1).(6.43)

The function θ obeys an equation of the same form as in (6.38). Indeed, at each
η 6= 0, the value of θ(η) is equal to that of ϕj(u0 +δ ·ηm1) for some choice of j. The
difference between the θ equation and (6.38) is the following. First, s0 is multiplied
by a factor of (η∗/η)m1−1. Second, s1 is multiplied by a factor of (η∗)m1−1.

This equation for θ implies various a priori estimates for |dθ|. Of course, |dθ| is
in L2 because the map to D3 is conformal. However, the equation for θ can also
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be used to estimate the L2 norm of |dθ| over a sub-disk of some radius r < 1 in
the radius 1/2 disk in C with center 0. Indeed, fix a point η0 in this disk, and for
s > 0, let κ(s) denote the L2 norm of |dθ|2 over the disk of radius s and center
η0. Then, integration by parts bounds κ(s) by a sum of two terms. The first is
a uniform multiple of s2. (This comes from the s1 term in (6.38).) The second
is a uniform multiple of the integral over the boundary of the radius s disk of
|θ − θ0| · |dθ|. Here, θ0 is the average value of θ on said boundary. (This second
term comes by integrating by parts to relate the L2 norm of ∂θ

∂η to that of dθ. Note

that the term with s1 in (6.38) only affects the size of the “uniform multiple” since
s1 can be assumed much less than 1 in absolute value.) Anyway, the aforementioned
boundary integral is itself bounded by a uniform multiple of the integral over the
boundary of s · |dθ|2. (Remember that the L2-norm of a function on the circle of
radius s (such as θ− θ0) whose integral is zero is bounded by s times the L2

1 norm
of said function.)

Since the integral over the boundary circle of |dθ|2 is the s-derivative of κ(s),
one finds that κ(s) obeys an equation of the form

s
dκ

ds
≥ c · κ− s2.(6.44)

This last equation integrates to give κ(s) ≤ z · sc for some constants c > 0 and z.
Finally remark that this last bound on κ(s) implies a similar bound on the L2

norm of (6.41) on a radius s disk in D3. That is, the L2 norm of (6.41) on a radius

s disk near u0 is bounded a priori by z′ · sc′ for some constants c′ > 0 and z′.

Step 10. With the preceding understood, return to the function f in (6.42) and in
particular to the question of the vanishing of exp(v). The point is that the preceding
integral estimate for the L2 norm of (6.41) on a radius s disk near s0 implies that
the function v is a priori bounded near u0. (In fact, v is Hölder continuous with
exponent determined by c′. See, e.g., [Mo, Theorem 3.5.2].) Thus, f in (6.42)
vanishes at u0 only if u0 is a zero of the holomorphic function f0.

Apply the preceding analysis to each of the finite set of polynomials which de-
lineate the strata of Cn ≈ Cn to learn that the zeros of these polynomials which
are isolated (i.e. most of them) are zeros only of their holomorphic parts—the f0

in (6.42). It follows that there are only finitely many isolated zeros of these poly-
nomials, and hence only isolated zeros. This last conclusion implies Lemma 6.13.

(f) Proposition 6.1—final arguments. This section completes the proof of
Proposition 6.1 with a description of the complex curve Σ and the pseudo-holomor-
phic map ϕ.

To obtain Σ, start with the set C0 ⊂ C of regular points. This set comprises an
embedded, finite area, pseudo-holomorphic submanifold of X . And, Lemmas 6.3
and 6.13 imply that there is an open set in C0 with compact closure (in C0) whose
complement is diffeomorphic to a finite, disjoint union of cylinders [0,∞)× S1.

The embedding of C0 into X endows C0 with a complex structure. And, because
C0 has finitely many annular ends, C0 is complex analytically equivalent to the
complement of a finite number of points in a compact complex curve. This compact
curve is the curve Σ for Proposition 6.1.

As for the map ϕ, consider that the embedding into X of Σ minus these finite
points is a pseudo-holomorphic map which extends as a continuous map from the
whole of Σ into X . The latter is the map ϕ. Standard elliptic theory can be invoked
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to prove that ϕ is a smooth map and is everywhere pseudo-holomorphic. (One need
not refer to the removable singularities theorem for pseudo-holomorphic maps [SU]
(see, e.g., [MS, Section 4.2]) which also asserts that ϕ is pseudo-holomorphic on the
whole of Σ. Indeed, the non-classical part of the removable singularities theorem is
the one that establishes ϕ’s continuity.)

7. Constraints on symplectic 4-manifolds

The purpose of this section is to discuss the theorems of the introductory section.
Aside from Theorem 1.3, the principal player in these discussions is the genericity
result which is quoted below as Proposition 7.1. The first two subsections of this
section discuss Proposition 7.1; and the remaining subsections discuss the theorems
of the Introduction.

(a) Regularity for generic J. For applications to the proofs of the assertions
in the Introduction, it proves useful to have some a priori regularity results for the
maps ϕ which arise in Proposition 6.1. The proposition below serves this purpose
by analyzing the possibilities for ϕ for a suitably generic almost complex structure
(though still one which is compatible with the given symplectic form ω.) In this
regard, remember that an almost complex J is ω-compatible when ω(·, J(·)) defines
a Riemannian metric on X . The form ω is self-dual for such a metric with length√

2. Conversely, if g is a metric for which ω is self-dual with length
√

2, then the
almost complex structure defined by g and ω is ω-compatible.

The genericity results stated in Proposition 7.1 are probably known to pseudo-
holomorphic curve experts (see [Rua] and [MS]); however, the author has found no
statement in the literature which summarizes the situation.

The proposition below requires a four part digression to introduce some ter-
minology. Part 1 of the digression introduces the Fréchet space Cω of smooth
almost complex structures which are ω-compatible. For part 2 of the digression,
let e ∈ H2(X ;Z) be a non-zero class and let d ≡ −c · e + e · e, where c ≡ c1(K)
and where · is the cup product pairing. If d ≥ 0, let Ω ⊂ X be a set of d/2 distinct
points. If d ≤ 0, set Ω ≡ ∅. Given J ∈ Cω, use m(e) to denote the space of pairs
(ϕ,Σ), where

(1) Σ is a compact, complex curve.

(2) ϕ : Σ→ X is a pseudo-holomorphic map which is not constant

on any component of Σ.

(3) ϕ∗[Σ] is Poincaré dual to e.

(4) Ω ⊂ ϕ(Σ).

(7.1)

(With regard to (7.1)(3), remark that complex curves have canonical orientations.)
For part 3 of the digression, suppose that Σ is a compact, complex curve and

that ϕ : Σ→ X is a pseudo-holomorphic map. Say that ϕ has multiplicity one if ϕ
does not factor as ϕ′ ◦ ψ, where ψ is a holomorphic map of Σ to a complex curve
Σ′ with ψ∗[Σ] 6= [Σ′], and where ϕ′ : Σ′ → X is a pseudo-holomorphic map.

Part 4 introduces the notion of Baire subset of a complete metric space. This
is, by definition, a countable intersection of open, dense sets. In particular, such a
subset is dense. (And, any countable intersection of such sets is also Baire.)

Here is the regularity theorem:
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Proposition 7.1. Let X be a compact, oriented 4-manifold with symplectic form
ω. There is a Baire set in Cω whose members have the following properties : First,
fix a non-zero class e ∈ H2(X,Z) and set d ≡ −c · e+ e · e. Then

(A) Suppose that m(e) contains (ϕ,Σ) such that ϕ has multiplicity 1 on the union
S ⊂ Σ of those genus zero components whose fundamental classes have ϕ∗-images
with negative square. Then, the following is true:

(1) If d < 0, then m(e) = ∅.
(2) When (ϕ,Σ) ∈ m(e), then ϕ embeds all genus g 6= 1 components of Σ.
(3) When (ϕ,Σ) ∈ m(e), ϕ on any genus 1 component of Σ is a covering map

onto some embedded, pseudo-holomorphic torus in X.
(4) When (ϕ,Σ) ∈ m(e), the images of the components of Σ under ϕ are

disjoint.
(5) The set of images {ϕ(Σ) : (ϕ,Σ) ∈ m(e)} is finite.

(B) In general, let S ⊂ Σ be as in (A). Then the image of S under ϕ is a disjoint
union of embedded, pseudo-holomorphic spheres with self-intersection number −1.

(b) Proof of Proposition 7.1. This subsection contains the proof of Proposition
7.1.

There are two ingredients to the arguments. The first ingredient is the Sard-
Smale theorem [SS] and transversality theory on Banach manifolds. The second
ingredient is the adjunction formula. The latter gives the genus g of an immersed
(multiplicity 1) pseudo-holomorphic curve in terms of the degree of the normal
bundle of the curve and the cohomology class e of its Poincaré dual. The simplest
case is when Σ is a compact, connected, complex curve and ϕ : Σ → X is an
embedding. Then

g = 1 + 1
2 (c · e+ e · e),(7.2)

where c is the first Chern class of the canonical bundle K. In the case where ϕ is
an immersion with n double points,

g = 1 + 1
2 (c · e+ e · e− 2n).(7.3)

(Note that all of the double points of an immersed pseudo-holomorphic curve have
positive local intersection number. Thus, e · e − 2n is the degree of the normal
bundle of ϕ(Σ).) The numerology also involves an integer

d ≡ −c · e+ e · e− 2 · n.(7.4)

The proof of Proposition 7.1 is established in a series of steps. For this purpose,
introduce H(e) to denote a component of the space of (ϕ,Σ) which obey (7.1)(1)–
(7.1)(3).

Step 1. Consider first the case where H(e) contains some pair (ϕ,Σ) where Σ is
connected and where ϕ has multiplicity one. If Σ has genus zero, arguments in
[Rua] establish a Baire subset C1 ⊂ Cω with the property that H(e) = ∅ unless
d ≥ 0. By the adjunction formula, this requires d = (1 − 2n + e · e) ≥ 0, which
requires e · e ≥ −1. Likewise, the arguments in [Rua] establish a path connected,
Baire subset C1 ⊂ Cω for which H(e) = ∅ unless d ≥ 0 and e · e ≥ g − 1 + 2n.
(Thus, genus positive curves have non-negative self-intersections.)

Step 2. Suppose that H(e) contains a pair (ϕ,Σ) where Σ has just one component
and ϕ has multiplicity 1. The arguments in [Rua] prove that there is a Baire subset
C2 ⊂ C1 for which H(e) is a stratified space whose smooth strata are the inverse
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images of the smooth strata of the tautological map to the moduli space of complex
structures on Σ. The dimension of the top strata is equal to d in the case where
g ≥ 2, and it equals d+ 2 and d+ 6 when g = 1 and 0, respectively. (In these last
two cases, there are a 2 and 6 dimensional family of degree one holomorphic maps
from Σ to itself.)

Step 3. Suppose that H(e) contains a pair (ϕ,Σ) where Σ has one component and
ϕ has multiplicity 1. Let H(e)c ⊂ H(e) denote the set of (ϕ,Σ) for which ϕ is not
an immersion. The arguments in Chapter 6 of [MS] generalize readily to the case
of genus g > 0 surfaces to prove that there is a Baire subset C3 ⊂ C2 for which
the set H(e)c ⊂ H(e) is a subvariety which intersects each stratum transversely
as a codimension 2 subvariety. Note that this step plus the previous two imply
Assertion B.

Step 4. Suppose that H(e) contains a pair (ϕ,Σ) where Σ has one component and
ϕ has multiplicity 1. Let Ω ⊂ X be a set of some number m > 0 distinct points.
The arguments in [Rua] prove that there is a Baire subset C4 ⊂ C3 for which the
subspace H(e; Ω) ⊂ H(e) of pairs (ϕ,Σ) with Ω ⊂ ϕ(Σ) is a subvariety which
intersects each stratum and each stratum of H(e)c transversely as a codimension
m submanifold.

Step 5. Let e, e′ ∈ H2(X ;Z) be classes and suppose that corresponding spaces H(e)
and H(e′) both contain pairs (ϕ,Σ) where Σ is connected and ϕ has multiplicity
1. The arguments in Chapter 6 of [MS] generalize readily to establish a Baire
subset C5 ⊂ C3 for which the subspace of ((ϕ,Σ), (ϕ′,Σ′)) ∈ H(e) × H(e′) which
do not intersect transversely at regular points of both ϕ and ϕ′ is a codimension
2 subvariety of H(e)×H(e′). Furthermore, if, say, finite subsets Ω,Ω′ ⊂ X have
been a priori specified, then this variety in H(e)×H(e′) can be assumed to intersect
the product of any of the previously specified strata transversely as a codimension
2 subvariety.

(Remember that the local intersection number of two pseudo-holomorphic curves
at a transversal intersection point equals 1.)

Step 6. Now, take the almost complex structure from C2. Let (ϕ,Σ) ∈ H(e) have
the property that each 2-sphere component is mapped with multiplicity 1. The
components of Σ form a set {Σi}, and suppose that ϕ|Σi = ϕi ◦ ψi, where ψi is a
degree mi ≥ 1 holomorphic map from Σi to a compact complex curve Σ′i, and where
ϕi is a multiplicity one, pseudo-holomorphic map from Σ′i into X . (If mi = 1, one
can assume that Σ′i = Σi and ψi is the identity map.)

Write the Poincaré dual to ϕ∗[Σi] as mi · ei. Thus, e =
∑
imi · ei. Each

pair (ϕi,Σi) is in the corresponding H(ei), a stratified space of dimension di ≡
−c · ei + ei · ei − 2ni + κi, where ni is the number of double points for the generic
pair in H(ei) and where κi = 0, 2 or 6 depending on whether the genus of Σi is
greater than 1, 1 or 0.

When i 6= j, let nij denote the intersection number of Σi with Σj . Note that
this is a priori non-negative.

Let d ≡ −c · e+ e · e. Note that

d =
∑
i

mi · di + 2 ·
∑
i

ni +
∑
i

(m2
i −mi)ei · ei +

∑
i6=j

nij(7.5)
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is a sum of non-negative terms. In particular,

d ≥
∑
i

di(7.6)

with equality if and only if

(1) For all i, mi = 1 unless di = ei · ei = 0.

(2) For all i, ni = 0.

(3) For all i 6= j, nij = 0.

(7.7)

This last equation with the previous steps (especially Step 4) establishes the first
four parts of assertion (A) of Proposition 7.1.

Step 7. The fifth part of assertion (A) is proved in [Rua] except in the case where
m(e) contains a pair (ϕ,Σ) where Σ contains a genus 0 component for which the
corresponding mi is greater than 1 and the corresponding ei obeys c ·ei = ei ·ei = 0.
To make the proof for this case, it is sufficient to assume that m(e) contains a
pair (ϕ,Σ) where Σ is a torus which is mapped with multiplicity m by ϕ onto an
embedded, pseudo-holomorphic torus Σ′ ⊂ X . Note that the map ϕ must be, a
priori, an m-fold covering map.

It follows from the preceding steps that there are no pseudo-holomorphic tori
Σ′′ ⊂ X which are homologous to Σ′ and close to Σ′ in X . Thus, the only way the
assertion in question can fail is if there is a sequence {Σν} of embedded, pseudo-
holomorphic tori in X with the following properties:

(1) [Σν ] = n · [Σ′] for some n > 1 which divides m.

(2) lim
ν→∞

{ρν ≡ sup{dist(x,Σ′) : x ∈ Σν}} = 0.
(7.8)

Note that (7.8)(1) implies that no Σν can intersect Σ′ because the self-intersection
number of Σ′ is, by assumption, zero. And, (7.8)(2) asserts that for ν large, Σv
lies in any a priori specified tubular neighborhood of Σ′ as a pseudo-holomorphic
curve.

With the preceding understood, remark that the exponential map for the Rie-
mannian metric identifies a tubular neighborhood of Σ′ with a disk bundle in the
normal bundle, N , to Σ′. With this understood, one can identify Σν (for ν large)
with an embedded torus in the normal bundle to Σ′; this will, henceforth, be done.
With this understood, rescale the fibers of N by a ν dependent constant so that
the rescaled Σν , call it Σ′ν , is such that the point of maximum distance from the
zero section has distance 1. Note that the rescaling produces, for large ν, a new
almost complex structure, Jν , on the radius 2 disk bundle.

The sequence {Jν} of almost complex structures will converge to an almost com-
plex structure, J0, which extends over the total space ofN as a homogeneous almost
complex structure. That is, J0 is invariant under the group of diffeomorphisms of
N which multiply the fibers by a non-zero real number. Meanwhile, the sequence
{Σ′ν} will have a subsequence which converges to a J0-pseudo-holomorphic torus Σ1

in the normal bundle to Σ′ with the property that the projection to Σ′ is an n-fold
covering map. With the preceding understood, the relevant question is: Which
homogeneous almost complex structures admit such a Σ1?

To analyze homogeneous almost complex structures, remark that one can choose
fiber coordinates ξ for N so that the fibers of N are J0-pseudo-holomorphic, as is
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the zero section ξ ≡ 0. One can even choose a globally defined complex coordinate
ξ for the fiber of N so that J0 is as follows:

J0 · dξ = i · dξ +B+ξ +B−ξ
∗,(7.9)

where B± are complex valued, (0, 1)-forms on Σ′. (Remember that N is a topologi-
cally trivial vector bundle since Σ′ has square zero.) Note that this J0 is integrable
where B− vanishes.

With J0 understood, remark that Σ1 can be viewed as a section s of a certain
flat (hence holomorphic), rank n, complex vector bundle over Σ′. The section s
must also obey the equation:

∂∗s+
1

2i
(B+s+B−s

∗) = 0.(7.10)

The task now is to prove that (7.10) has no solutions for a suitably generic choice
of data B±. To prove that such is the case, fix sections B0

+, B
0
− and b of T 0,1 with

b nowhere vanishing. (Because Σ′ is a torus, T 0,1 is topologically trivial.) Then,
consider (7.10) with B+ ≡ B0

+ and with B− ≡ B0
−+ t · b with t ∈ C allowed to vary.

The first observation (using the Weitzenböch formula for (7.10)) is that there are
no solutions when |t| is sufficiently large. (This is because b is nowhere vanishing.)
Meanwhile, simple arguments from analytic perturbation theory prove that the set
of t for which (7.10) has a solution is either the whole of C or else a discrete set.
Here is the point: For given t ∈ C, let Lt denote the operator in (7.10). Now,
fix t0 ∈ C. Perturbation theory produces a neighborhood D ⊂ C of t0 and, when
t ∈ D, a matrix Mt from the (finite dimensional) kernel of Lt0 to the cokernel of
Lt0 with the following properties: First, kernel(Mt) and kernel(Lt) are naturally
identified by L2-orthogonal projection of the latter onto kernel(Lt0). Second, the
matrix Mt can be constructed to vary complex analytically with t ∈ D. Now, the
index of Lt0 is zero, so the kernel of Mt is non-trivial if and only if the determinant
of Mt is zero. But, Mt varies analytically with t ∈ D, so its determinant defines an
analytic function on D and so vanishes discretely or completely.

(c) Proofs for minimal X of Theorems 0.1 and 0.2. In discussing Theorems
0.1 and 0.2, it is convenient to first establish both in the case where X is minimal
in the following sense:

X has no embedded 2-spheres with self-intersection number −1.(7.11)

Consider first the proof of Theorem 0.1 with this assumption:

Proof of Theorem 0.1. First of all, take one of Proposition 7.1’s generic, ω-compat-
ible almost complex structures, and use this almost complex structure and ω to
define the Riemannian metric on X . As X has b+2 > 1, the Seiberg-Witten invari-
ants are well defined; in particular, they are independent of the perturbation µ in
(1.8). Thus, if the Seiberg-Witten invariant of e is non-zero, then (1.20) has a so-

lution for the SpinC structure in (1.14) for every value of r. With this understood,
invoke Theorem 1.3 and Proposition 7.1. Theorem 1.3 finds a smooth, compact,
complex curve Σ and a pseudo-holomorphic map ϕ : Σ → X which pushes the
fundamental class of Σ forward as the Poincaré dual of e. Proposition 7.1 then
describes the possibilities for such a map. In particular, ϕ has to be an embedding
except possibly on genus zero or genus 1 components of Σ. The minimality assump-
tion and Proposition 7.1 imply that Σ has no genus zero components. If Σ has a
genus one component, then ϕ will map this component as a multiple cover onto a
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pseudo-holomorphic submanifold Σ1 ⊂ X which itself has genus 1. Proposition 7.1
plus the adjunction formula (7.2) imply that Σ1 has trivial normal bundle. Thus,
for n ≥ 1, the class n · [Σ1] can be represented by a symplectically embedded torus
in the normal bundle to Σ1.

Proof of Theorem 0.2. Theorem 0.1’s proof finds a set of ω-compatible, almost com-
plex structures with the property that:

A non-zero class e ∈ H2(X ;Z) with SW(e) 6= 0 is Poincaré dual to the

fundamental class of a pseudo-holomorphic submanifold Σ ⊂ X .
(7.12)

In the discussions below all almost complex structures under consideration are
assumed to satisfy (7.12).

Assertion (1). This assertion follows from Theorem 0.1 and the main theorem in
[T2] which asserts that SW(c1(K)) is equal to ±1. (Also, SW(0) = ±1.)

The second assertion is inoperative for a minimal X .

Assertion (3). By (7.10) and the main theorem in [T2], there is an embedded,
pseudo-holomorphic submanifold Σ whose fundamental class is Poincaré dual to
c1(K). Let {Σi} denote the components of Σ. It follows from Proposition 7.1 and
the adjunction formula that the only components of Σ with negative self-intersection
number are spheres of self-intersection −1. Thus, c1(K) has positive square.

Assertion (4). This assertion follows from assertion (3) and the fact that d in (1.9)

is equal to zero for the canonical SpinC structure. (Note that L = K−1 in this
case.)

Assertion (5). Note first that if c1(K) has zero square, then (7.12), the adjunction
formula (7.2) and Proposition 7.1 imply that c1(K) is Poincaré dual to a disjoint
union of embedded tori.

Now, let e ∈ H2(X ;Z) be a class with SW(e) 6= 0. The case for e = 0 is
automatically true, so assume that e is not trivial. Note that (7.12) and Proposition
7.1 insure that e · e ≥ 0 since X is assumed to be minimal.

To go farther, it is necessary to digress momentarily to introduce a generalized
adjunction formula from [KM1] and [MST]. Here is this formula in the symplectic
context:

The Generalized Adjunction Formula. Let X be a compact, oriented sym-
plectic manifold with b+2 > 1. Fix a class k ∈ H2(X ;Z) with SW(k) 6= 0; and fix
a class s ∈ H2(X ;Z) with non-negative square. Let gs denote the smallest integer
that is the genus of an embedded surface whose fundamental class is Poincaré dual
to s. Then

gs ≥ 1 + 1
2 (| − c1(K) · s+ 2k · s|+ s · s).(7.13)

(Compare with the celebrated SU(2)-gauge theory version of this inequality in
[KM2].)

End the digression.
Consider the preceding adjunction formula with k = e and with s equal to the

Poincaré dual to the fundamental class of any of the components of the pseudo-
holomorphic submanifold which is Poincaré dual to c1(K). (These are supplied
courtesy of (7.12).) Since each of the aforementioned components is a torus with
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self-intersection zero, the inequality in (7.13) can be satisfied only if c1(K)·e = 0. In
fact, since embedded pseudo-holomorphic curves intersect positively, (7.13) implies
that the components of the pseudo-holomorphic curve which represents e are all
disjoint from those that represent c1(K).

To complete the argument, return again to (7.13) but this time take s and k both
equal to e. The resulting inequality is compatible with the adjunction formula in
(7.2) only if e · e = 0. In this case, (7.12), the minimality of X and Proposition
7.1 imply that each component of the pseudo-holomorphic submanifold which is
Poincaré dual to e must be a torus with zero self-intersection number.

Assertion (6). This assertion is also a consequence of (7.13). To start, use (7.12) to
obtain a pseudo-holomorphic submanifold of X whose fundamental class is Poincaré
dual to e. Once again, the minimality of X and Proposition 7.1 imply that e ·e ≥ 0.
With this understood, suppose that d ≡ −c1(K)·e+e·e > 0. (Note that SW(e) ≡ 0
by definition if d < 0.) Positivity of d implies that e · e > c1(K) · e and this makes
(7.12) incompatible with (7.2) in the case where k = e and s = e.

(d) Proof of Theorems 0.1 and 0.2 when X is not minimal. Consider first
the case for Theorem 0.1.

Proof of Theorem 0.1. The only new issue is that Σ can have one or more 2-sphere
components. In this case, Proposition 7.1 asserts that with a generic choice of ω-
compatible almost complex structure, ϕ maps S onto a union of disjoint, embedded,
pseudo-holomorphic 2-spheres in X , each with square −1. There is nothing more
to say if ϕ is an embedding, and the claim is that such is always the case.

To prove the claim assume to the contrary that ϕ on S is not 1-1 onto some 2-
sphere component Σ0 of its image. To obtain a contradiction, note first that Σ0 is,
in any case, pseudo-holomorphic with square−1. This means that X is a symplectic
blow up. That is, X = Y = CP2, and Y is a symplectic manifold. Furthermore,
let e0 denote the Poincaré dual to the fundamental class of Σ0. Since ϕ multiply
covers Σ0, there is an integer m > 1 such that e1 ≡ e−m · e0 is Poincaré dual to a
sum of positive multiples of the Poincaré duals of the components of Σ1 ≡ Σ−Σ0.
Note that Σ1 can be assumed to sit in Y , and by Poincaré duality, this identifies
e1 with a non-zero class e′1 ∈ H2(Y ;Z).

A digression is now required to point out that there is a blow-up formula which
relates the Seiberg-Witten invariants of Y to those of X . (This was proved inde-
pendently by Kronheimer and Mrowka [Mr] and by Fintushel and Stern [FS].) In
particular, the blow-up formula has the following relevant consequences:

(1) Define simple type as in assertion (6) of Theorem 0.2. If Y has

simple type, then so does X .

(2) SW(e) = 0 if and only if SW(e′1) = 0.

(7.14)

End the digression.
To use (7.14), remark first that (7.14)(1) implies that any symplectic manifold

has simple type. That is, (7.14)(1) implies assertion (6) of Theorem 0.2 in the
general case. Indeed, the proof for minimal Y is given above, and any symplectic
Y can be obtained from a minimal one by a sequence of symplectic blowups.

With the preceding understood, note that as m > 1, the integer d ≡ −c1(K) · e
+ e · e will be negative unless d1 ≡ −c1(K) · e1 + e1 · e1 > 0. And, this d1 is
the dimension of the relevant Seiberg-Witten moduli space for computing SW(e′1).
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Thus, in the case where m > 1, one finds that SW(e) 6= 0 requires that Y not have
simple type as described in assertion (6) of Theorem 0.2. This contradiction gives
the initial claim and Theorem 0.1 in the non-minimal case.

Proof of Theorem 0.2. Only assertions (1) and (2) remain to be proved. (Assertion
(6) was proved above.) As in the minimal case, the first assertion follows from
Theorem 0.1 and the main result in [T2].

Consider assertion (2): To begin, remember that [T2] asserts in part that SW(0)
and SW(c1(K)) are both ±1. Using the sphere of square −1, one can construct a
diffeomorphism of X which acts on H2(X ;Z) as reflection in the hyperplane which
is orthogonal to e. The author was reminded by Daniel Ruberman that c1(K)·e 6= 0
because c1(K) is a characteristic class. Thus, c1(K) is not fixed by the diffeomor-
phism. According to Proposition 1.2, the Seiberg-Witten invariant as a map from
Spin to H2(X ;Z) is diffeomorphism invariant. However, the identification in (0.2)
is not diffeomorphism invariant. Sorting this out, one finds that SW(m · e) = ±1,
where m = −c1(K) · e and where SW is as in (0.3). Theorem 1.3 and Proposi-
tion 7.1 provide a Baire set of ω-compatible, almost complex structures for which
e is represented as s+ t, where s is Poincaré dual to a pseudo-holomorphic sphere
with self-intersection −1 and where t is Poincaré dual to the fundamental class of
a symplectic submanifold which is disjoint from the 2-sphere for s. It remains now
to prove that t ≡ 0.

To begin, remark that because s and t are Poincaré dual to disjoint subsets in
X , one has t · t = 0 because e · e = −1 = s · s.

The next step argues that m ≡ −c1(K) · e = 1. To prove this claim, consider
first the orbit O ⊂ H2(X ;Z) of −c1(K) under the action of the group G which is
generated by the reflections in the planes orthogonal to s and to e. Note that every
element in G is generated by a diffeomorphism of X . Thus, if −c1(K) + 2τ ∈ O,
then SW(τ) = ±1. With the preceding understood, look now at the element T ∈ G
which is given by T (τ) ≡ τ + 2[τ · s − τ · e]s+ 2(τ · e)t. (To obtain T , first reflect
through the plane orthogonal to e and then reflect through the plane orthogonal
to s.) Since the Seiberg-Witten invariant is non-zero on only finitely many classes
[W], the set of classes {Tn(−c1(K))}n≥1 must be finite. The latter requirement
will be seen to require that m = 1.

To analyze cn ≡ Tn(c1(K)), observe that

(1) cn · e = cn−1 · e+ 2 · (cn−1 · e− cn−1 · s).
(2) cn · s− cn · e = cn−1 · e− cn−1 · s.

(7.15)

Thus, the coefficient of t in cn will grow in absolute value with n unless c1(K) · e =
c1(K) · s. As the latter is equal to −1, the claim is proved.

The third step asserts that −c1(K)−2 ·t is in O. Given this claim, it follows that
t = 0 since both ±t cannot be Poincaré dual to fundamental classes of symplectic
submanifolds. (If τ is the Poincaré dual to the fundamental class of a symplectic
submanifold, then [ω] · τ > 0.) To prove the assertion, observe first that reflection
in the plane orthogonal to s sends −c1(K) to −c1(K) + 2s. Then, reflection in the
plan orthogonal to e = s+t sends the latter class to −c1(K)−2t (since t ·c1(K) = 0
because c1(K) · e = 1).

(e) Proof of Theorem 0.3. Remember that CP2 has a metric with positive scalar
curvature. This implies that the Seiberg-Witten invariants as computed using (1.7)
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all vanish. Furthermore, since CP2 has positive definite intersection form, the
invariants as computed using (1.7) vanish for any choice of metric. Now, let ω be
a symplectic form for CP2 and choose an ω-compatible almost complex structure
J from the Baire set from Proposition 7.1.

The key observation is that for larger r in (1.20), the invariants will not vanish.
In particular, let e ∈ H2(CP2;Z) denote the generator which has e · [ω] > 0.
(Note that [T5] proves that c1(K) · [ω] is negative.) Then argue as in [T5] that
for r > r0 ≡ 2πe · [ω], the invariant SW as computed by solutions to (1.20) has
SW(e) 6= 0. (At r = r0, the moduli space of solutions consists solely of (A, (0, 0)),
where A has curvature equal to r0 · i ·ω. For r slightly greater than r0, perturbation
theory identifies the moduli space of solutions to (1.20) as a copy of CP2, and the
invariant SW(e) can be calculated to equal 1.) There are no other wall crossings for
r > r0. With this understood, apply Theorem 1.3 and Proposition 7.1 to find an
embedded, pseudo-holomorphic 2-sphere for the almost complex structure J . Given
such a 2-sphere, a theorem of Gromov in [Gr] asserts that there is a diffeomorphism
of CP2 which takes ω to a multiple of the standard Kähler form.
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