SW $\Rightarrow$ Gr: From the Seiberg-Witten equations to pseudo-holomorphic curves
HTML articles powered by AMS MathViewer
- by Clifford H. Taubes PDF
- J. Amer. Math. Soc. 9 (1996), 845-918 Request permission
References
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- Sheldon Xu-Dong Chang, Two-dimensional area minimizing integral currents are classical minimal surfaces, J. Amer. Math. Soc. 1 (1988), no. 4, 699–778. MR 946554, DOI 10.1090/S0894-0347-1988-0946554-0
- S. K. Donaldson, Lectures at MIT, September 1994.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. MR 123260, DOI 10.2307/1970227
- R. Fintushel and R. Stern, Immersed spheres in $4$-manifolds and the immersed Thom Conjecture, preprint, 1995.
- Daniel S. Freed and Karen K. Uhlenbeck, Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, vol. 1, Springer-Verlag, New York, 1984. MR 757358, DOI 10.1007/978-1-4684-0258-2
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- Arthur Jaffe and Clifford Taubes, Vortices and monopoles, Progress in Physics, vol. 2, Birkhäuser, Boston, Mass., 1980. Structure of static gauge theories. MR 614447
- James R. King, The currents defined by analytic varieties, Acta Math. 127 (1971), no. 3-4, 185–220. MR 393550, DOI 10.1007/BF02392053
- P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), no. 6, 797–808. MR 1306022, DOI 10.4310/MRL.1994.v1.n6.a14
- P. B. Kronheimer and T. S. Mrowka, Recurrence relations and asymptotics for four-manifold invariants, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 2, 215–221. MR 1246469, DOI 10.1090/S0273-0979-1994-00492-6
- H. Blaine Lawson Jr., Minimal varieties in real and complex geometry, Séminaire de Mathématiques Supérieures, No. 57 (Été 1973), Les Presses de l’Université de Montréal, Montreal, Que., 1974. MR 0474148
- D. McDuff and D. Salamon, $J$-Holomorphic Curves and Quantum Cohomology, preprint.
- J. W. Morgan, Z. Szabó, and C. H. Taubes, A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture, preprint, 1995.
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511, DOI 10.1007/978-3-540-69952-1
- T. S. Mrowka, Lectures at Harvard University, Spring, 1995.
- Y. Ruan, Symplectic topology and complex surfaces, in Geometry and Topology on Complex Manifolds, T. Mabuchi, J. Noguchi, T. Ochial, eds., World Scientific Publications, Singapore, 1994.
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- J. Sacks and K. Uhlenbeck, The existence of minimal immersions of $2$-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1–24. MR 604040, DOI 10.2307/1971131
- N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang-Mills theory, Nuclear Phys. B 426 (1994), no. 1, 19–52. MR 1293681, DOI 10.1016/0550-3213(94)90124-4
- N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD, Nuclear Phys. B 431 (1994), no. 3, 484–550. MR 1306869, DOI 10.1016/0550-3213(94)90214-3
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250
- Wilhelm Stoll, The growth of the area of a transcendental analytic set. I, II, Math. Ann. 156 (1964), 144–170. MR 166393, DOI 10.1007/BF01359928
- Clifford Henry Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995), no. 2, 221–238. MR 1324704, DOI 10.4310/MRL.1995.v2.n2.a10
- Clifford Henry Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809–822. MR 1306023, DOI 10.4310/MRL.1994.v1.n6.a15
- Clifford Henry Taubes, On the equivalence of the first and second order equations for gauge theories, Comm. Math. Phys. 75 (1980), no. 3, 207–227. MR 581946, DOI 10.1007/BF01212709
- Clifford Henry Taubes, Arbitrary $N$-vortex solutions to the first order Ginzburg-Landau equations, Comm. Math. Phys. 72 (1980), no. 3, 277–292. MR 573986, DOI 10.1007/BF01197552
- Clifford Henry Taubes, More constraints on symplectic forms from Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), no. 1, 9–13. MR 1312973, DOI 10.4310/MRL.1995.v2.n1.a2
- E. Witten, Monopoles and $4$-manifolds, Math. Res. Letters 1 (1994), 769–796.
- Rugang Ye, Gromov’s compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994), no. 2, 671–694. MR 1176088, DOI 10.1090/S0002-9947-1994-1176088-1
Additional Information
- Clifford H. Taubes
- Affiliation: Department of Mathematics, Harvard university, Cambridge, Massachusetts 02138
- MR Author ID: 171070
- Email: chtaubes@math.harvard.edu
- Received by editor(s): June 26, 1995
- Received by editor(s) in revised form: August 7, 1995
- Additional Notes: The author is supported in part by the National Science Foundation
- © Copyright 1996 American Mathematical Society
- Journal: J. Amer. Math. Soc. 9 (1996), 845-918
- MSC (1991): Primary 53C07, 53C15
- DOI: https://doi.org/10.1090/S0894-0347-96-00211-1
- MathSciNet review: 1362874