On the global dynamics of attractors for scalar delay equations
HTML articles powered by AMS MathViewer
- by Christopher McCord and Konstantin Mischaikow PDF
- J. Amer. Math. Soc. 9 (1996), 1095-1133 Request permission
Abstract:
A semi-conjugacy from the dynamics of the global attractors for a family of scalar delay differential equations with negative feedback onto the dynamics of a simple system of ordinary differential equations is constructed. The construction and proof are done in an abstract setting, and hence, are valid for a variety of dynamical systems which need not arise from delay equations. The proofs are based on the Conley index theory.References
- Shui Nee Chow and John Mallet-Paret, Integral averaging and bifurcation, J. Differential Equations 26 (1977), no. 1, 112–159. MR 488151, DOI 10.1016/0022-0396(77)90101-2
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- J. Doyne Farmer, Chaotic attractors of an infinite-dimensional dynamical system, Phys. D 4 (1981/82), no. 3, 366–393. MR 657740, DOI 10.1016/0167-2789(82)90042-2
- Andreas Floer, A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems 7 (1987), no. 1, 93–103. MR 886372, DOI 10.1017/S0143385700003825
- Bernold Fiedler and John Mallet-Paret, Connections between Morse sets for delay-differential equations, J. Reine Angew. Math. 397 (1989), 23–41. MR 993217
- Robert D. Franzosa, The continuation theory for Morse decompositions and connection matrices, Trans. Amer. Math. Soc. 310 (1988), no. 2, 781–803. MR 973177, DOI 10.1090/S0002-9947-1988-0973177-6
- T. Gedeon and K. Mischaikow, Structure of the global attractor of cyclic feedback systems, J. Dyn. Diff. Eqs., 7 (1995) 141-190.
- Jack Hale, Theory of functional differential equations, 2nd ed., Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977. MR 0508721, DOI 10.1007/978-1-4612-9892-2
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Jack K. Hale, Luis T. Magalhães, and Waldyr M. Oliva, An introduction to infinite-dimensional dynamical systems—geometric theory, Applied Mathematical Sciences, vol. 47, Springer-Verlag, New York, 1984. With an appendix by Krzysztof P. Rybakowski. MR 725501, DOI 10.1007/0-387-22896-9_{9}
- M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977), 287–366.
- John Mallet-Paret, Morse decompositions for delay-differential equations, J. Differential Equations 72 (1988), no. 2, 270–315. MR 932368, DOI 10.1016/0022-0396(88)90157-X
- Christopher McCord, Mappings and homological properties in the Conley index theory, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 175–198. MR 967637, DOI 10.1017/S014338570000941X
- Christopher McCord, Mappings and Morse decompositions in the Conley index theory, Indiana Univ. Math. J. 40 (1991), no. 3, 1061–1082. MR 1129342, DOI 10.1512/iumj.1991.40.40048
- C. McCord, K. Mischaikow, and M. Mrozek, Zeta functions, periodicity, and the Conley index for maps and flows with transverse cross-sections, J. Diff. Eqs. (in press).
- Shui-Nee Chow and Jack K. Hale (eds.), Dynamics of infinite-dimensional systems, NATO Advanced Science Institutes Series F: Computer and Systems Sciences, vol. 37, Springer-Verlag, Berlin, 1987. MR 921891, DOI 10.1007/978-3-642-86458-2
- Konstantin Mischaikow and Yoshihisa Morita, Dynamics on the global attractor of a gradient flow arising from the Ginzburg-Landau equation, Japan J. Indust. Appl. Math. 11 (1994), no. 2, 185–202. MR 1286431, DOI 10.1007/BF03167221
- Marian Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990), no. 1, 149–178. MR 968888, DOI 10.1090/S0002-9947-1990-0968888-1
- Krzysztof P. Rybakowski, The homotopy index and partial differential equations, Universitext, Springer-Verlag, Berlin, 1987. MR 910097, DOI 10.1007/978-3-642-72833-4
- Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR 797044, DOI 10.1090/S0002-9947-1985-0797044-3
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967, DOI 10.1007/978-1-4684-0313-8
Additional Information
- Christopher McCord
- Affiliation: Institute for Dynamics University of Cincinnati Cincinnati, Ohio 45221-0025
- Email: chris.mccord@uc.edu
- Konstantin Mischaikow
- Affiliation: Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, Georgia 30332
- MR Author ID: 249919
- Email: mischaik@math.gatech.edu
- Received by editor(s): July 24, 1992
- Received by editor(s) in revised form: September 5, 1995
- Additional Notes: Research was supported in part by NSF Grant DMS-9101412.
- © Copyright 1996 American Mathematical Society
- Journal: J. Amer. Math. Soc. 9 (1996), 1095-1133
- MSC (1991): Primary 58F12, 58F32, 34K05
- DOI: https://doi.org/10.1090/S0894-0347-96-00207-X
- MathSciNet review: 1354959