A generalization of Bourgain’s circular maximal theorem
HTML articles powered by AMS MathViewer
- by W. Schlag
- J. Amer. Math. Soc. 10 (1997), 103-122
- DOI: https://doi.org/10.1090/S0894-0347-97-00217-8
- PDF | Request permission
References
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, DOI 10.1007/BF02792533
- J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), no. 6, 1467–1476. MR 868898, DOI 10.2307/2374532
- Lennart Carleson and Per Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299. (errata insert). MR 361607, DOI 10.4064/sm-44-3-287-299
- L. Kolasa, T. Wolff. On some variants of the Kakeya problem. preprint (1995).
- J. M. Marstrand, Packing circles in the plane, Proc. London Math. Soc. (3) 55 (1987), no. 1, 37–58. MR 887283, DOI 10.1112/plms/s3-55.1.37
- Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge, Wave front sets, local smoothing and Bourgain’s circular maximal theorem, Ann. of Math. (2) 136 (1992), no. 1, 207–218. MR 1173929, DOI 10.2307/2946549
- W. Schlag. $L^p\to L^q$ estimates for the circular maximal function. Ph.D. Thesis. California Institute of Technology, 1996.
- Christopher D. Sogge, Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), no. 2, 349–376. MR 1098614, DOI 10.1007/BF01245080
- Christopher D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. MR 1205579, DOI 10.1017/CBO9780511530029
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
Bibliographic Information
- W. Schlag
- Affiliation: Department of Mathematics, 253–37 Caltech, Pasadena, California 91125
- Address at time of publication: Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540
- MR Author ID: 313635
- Email: schlag@cco.caltech.edu
- Received by editor(s): November 13, 1995
- Received by editor(s) in revised form: March 18, 1996
- Additional Notes: This paper is part of the author’s thesis at the California Institute of Technology written under the guidance of Prof. Thomas Wolff. Without his support, both mathematical and nonmathematical, this work would not have been possible.
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 103-122
- MSC (1991): Primary 42B25; Secondary 35L05
- DOI: https://doi.org/10.1090/S0894-0347-97-00217-8
- MathSciNet review: 1388870