The classification of hypersmooth Borel equivalence relations
HTML articles powered by AMS MathViewer
- by Alexander S. Kechris and Alain Louveau
- J. Amer. Math. Soc. 10 (1997), 215-242
- DOI: https://doi.org/10.1090/S0894-0347-97-00221-X
- PDF | Request permission
References
- R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193–225. MR 1149121, DOI 10.1090/S0002-9947-1994-1149121-0
- J. Feldman and A. Ramsay, Countable sections for free actions of groups, Adv. in Math. 55 (1985), no. 3, 224–227. MR 778962, DOI 10.1016/0001-8708(85)90091-X
- Harvey Friedman and Lee Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), no. 3, 894–914. MR 1011177, DOI 10.2307/2274750
- L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041, DOI 10.1090/S0894-0347-1990-1057041-5
- Leo Harrington, David Marker, and Saharon Shelah, Borel orderings, Trans. Amer. Math. Soc. 310 (1988), no. 1, 293–302. MR 965754, DOI 10.1090/S0002-9947-1988-0965754-3
- S. Jackson, A. S. Kechris and A. Louveau, On countable Borel equivalence relations, to appear.
- Alexander S. Kechris, Countable sections for locally compact group actions, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 283–295. MR 1176624, DOI 10.1017/S0143385700006751
- Alexander S. Kechris, Countable sections for locally compact group actions. II, Proc. Amer. Math. Soc. 120 (1994), no. 1, 241–247. MR 1169035, DOI 10.1090/S0002-9939-1994-1169035-5
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Alain Louveau, On the reducibility order between Borel equivalence relations, Logic, methodology and philosophy of science, IX (Uppsala, 1991) Stud. Logic Found. Math., vol. 134, North-Holland, Amsterdam, 1994, pp. 151–155. MR 1327979, DOI 10.1016/S0049-237X(06)80042-X
- Douglas E. Miller, On the measurability of orbits in Borel actions, Proc. Amer. Math. Soc. 63 (1977), no. 1, 165–170. MR 440519, DOI 10.1090/S0002-9939-1977-0440519-8
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- James T. Rogers Jr., Borel transversals and ergodic measures on indecomposable continua, Topology Appl. 24 (1986), no. 1-3, 217–227. Special volume in honor of R. H. Bing (1914–1986). MR 872494, DOI 10.1016/0166-8641(86)90065-9
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, DOI 10.1016/0003-4843(80)90002-9
- L. A. Bunimovich, I. P. Cornfeld, R. L. Dobrushin, M. V. Jakobson, N. B. Maslova, Ya. B. Pesin, Ya. G. Sinaĭ, Yu. M. Sukhov, and A. M. Vershik, Dynamical systems. II, Encyclopaedia of Mathematical Sciences, vol. 2, Springer-Verlag, Berlin, 1989. Ergodic theory with applications to dynamical systems and statistical mechanics; Edited and with a preface by Sinaĭ; Translated from the Russian. MR 1024068, DOI 10.1007/978-3-662-06788-8_{8}
- A. M. Vershik and A. L. Fëdorov, Trajectory theory, Current problems in mathematics. Newest results, Vol. 26, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 171–211, 260 (Russian). MR 849788
- V. G. Vinokurov and N. N. Ganihodžaev, Conditional functions in the trajectory theory of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 5, 928–964, 1181 (Russian). MR 513908
- V. M. Wagh, A descriptive version of Ambrose’s representation theorem for flows, Proc. Indian Acad. Sci. Math. Sci. 98 (1988), no. 2-3, 101–108. MR 994127, DOI 10.1007/BF02863630
Bibliographic Information
- Alexander S. Kechris
- Affiliation: Department of Mathematics, A. P. Sloan Laboratory of Mathematics and Statistics, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 99660
- Email: kechris@caltech.edu
- Alain Louveau
- Affiliation: Equipe d’Analyse, Université Paris VI, 4, Place Jussieu, 75230 Paris Cedex 05, France
- Email: louveau@ccr.jussieu.edu
- Received by editor(s): September 1, 1994
- Received by editor(s) in revised form: June 11, 1996
- Additional Notes: The first author’s research was partially supported by NSF Grant DMS-9317509
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 215-242
- MSC (1991): Primary 04A15, 03E15
- DOI: https://doi.org/10.1090/S0894-0347-97-00221-X
- MathSciNet review: 1396895