Structure of a Hecke algebra quotient
HTML articles powered by AMS MathViewer
- by C. Kenneth Fan
- J. Amer. Math. Soc. 10 (1997), 139-167
- DOI: https://doi.org/10.1090/S0894-0347-97-00222-1
- PDF | Request permission
Abstract:
Let $W$ be a Coxeter group with Coxeter graph $\gamma$. Let $\mathcal {H}$ be the associated Hecke algebra. We define a certain ideal $\mathcal {I}$ in $\mathcal {H}$ and study the quotient algebra $\bar {\mathcal {H}} = \mathcal {H}/\mathcal {I}$. We show that when $\gamma$ is one of the infinite series of graphs of type $E$, the quotient is semi-simple. We examine the cell structures of these algebras and construct their irreducible representations. We discuss the case where $\gamma$ is of type $B$, $F$, or $H$.References
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- C. K. Fan, A Hecke Algebra Quotient and Properties of Commutative Elements of a Weyl Group, Thesis (1995), MIT, supervised by G. Lusztig.
- C. K. Fan, A Hecke Algebra Quotient and Some Combinatorial Applications, Journal of Algebraic Combinatorics 5 no 3 (1996), 175-189.
- C. K. Fan, Schubert Varieties and Short Braidedness, preprint (1996).
- C. K. Fan and R. M. Green, Monomials and Temperley-Lieb Algebras, preprint (1996).
- C. K. Fan and J. R. Stembridge, Nilpotent Orbits and Commutative Elements, preprint (1996).
- J. J. Graham, Modular Representations of Hecke Algebras and Related Algebras, Thesis (1995), Univ. of Sydney.
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- Louis Kauffmann and H. Saleur, An algebraic approach to the planar coloring problem, Comm. Math. Phys. 152 (1993), no. 3, 565–590. MR 1213302, DOI 10.1007/BF02096619
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI 10.2969/aspm/00610255
- J. R. Stembridge, The enumeration of fully commutative elements of Coxeter groups, preprint (1996).
- J. R. Stembridge, On the Fully Commutative Elements of Coxeter Groups, Journal of Alg. Comb., to appear.
- J. R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc., to appear.
- H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280. MR 498284, DOI 10.1098/rspa.1971.0067
- B. W. Westbury, The representation theory of the Temperley-Lieb algebras, Math. Z. 219 (1995), no. 4, 539–565. MR 1343661, DOI 10.1007/BF02572380
Bibliographic Information
- C. Kenneth Fan
- Email: ckfan@math.harvard.edu
- Received by editor(s): May 14, 1996
- Additional Notes: Supported in part by a National Science Foundation postdoctoral fellowship.
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 139-167
- MSC (1991): Primary 16G30, 05E99; Secondary 16D70, 20F55
- DOI: https://doi.org/10.1090/S0894-0347-97-00222-1
- MathSciNet review: 1396894
Dedicated: Dedicated to my teacher, George Lusztig, on his fiftieth birthday