Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Mean growth of Koenigs eigenfunctions


Authors: Paul S. Bourdon and Joel H. Shapiro
Journal: J. Amer. Math. Soc. 10 (1997), 299-325
MSC (1991): Primary 30D05, 47B38
DOI: https://doi.org/10.1090/S0894-0347-97-00224-5
MathSciNet review: 1401457
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In 1884, G. Koenigs solved Schroeder’s functional equation \begin{equation*} f\circ \phi = \lambda f \end{equation*} in the following context: $\phi$ is a given holomorphic function mapping the open unit disk $U$ into itself and fixing a point $a\in U$, $f$ is holomorphic on $U$, and $\lambda$ is a complex scalar. Koenigs showed that if $0 < |\phi ’(a)| < 1$, then Schroeder’s equation for $\phi$ has a unique holomorphic solution $\sigma$ satisfying \begin{equation*} \sigma \circ \phi = \phi ’(a) \sigma \qquad \text {and}\qquad \sigma ’(0) = 1; \end{equation*} moreover, he showed that the only other solutions are the obvious ones given by constant multiples of powers of $\sigma$. We call $\sigma$ the Koenigs eigenfunction of $\phi$. Motivated by fundamental issues in operator theory and function theory, we seek to understand the growth of integral means of Koenigs eigenfunctions. For $0 < p < \infty$, we prove a sufficient condition for the Koenigs eigenfunction of $\phi$ to belong to the Hardy space $H^p$ and show that the condition is necessary when $\phi$ is analytic on the closed disk. For many mappings $\phi$ the condition may be expressed as a relationship between $\phi ’(a)$ and derivatives of $\phi$ at points on $\partial U$ that are fixed by some iterate of $\phi$. Our work depends upon a formula we establish for the essential spectral radius of any composition operator on the Hardy space $H^p$.


References [Enhancements On Off] (What's this?)

  • I. N. Baker and Ch. Pommerenke, On the iteration of analytic functions in a half-plane II, J. London Math. Soc. (2) 20 (1979), 255–258.
  • P. S. Bourdon and J. H. Shapiro, Riesz composition operators, preprint.
  • S. R. Caradus, W. E. Pfaffenberger, and B. Yood, Calkin algebras and algebras of operators on Banach spaces, Marcel Dekker, New York, 1974.
  • J. Caughran and H. J. Schwartz, Spectra of compact composition operators, Proc. Amer. Math. Soc. 51 (1975), 127–130.
  • C. C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), 69–95.
  • C. C. Cowen, Composition operators on $H^2$, J. Operator Th. 9 (1983),77–106.
  • C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
  • C. C. Cowen and B. D. MacCluer, Spectra of some composition operators, J. Funct. Anal. 125 (1994), 223–251.
  • P. L. Duren, Theory of $H^p$ Spaces, Academic Press, New York, 1983.
  • M. Essén, D.F. Shea, and C.S. Stanton, A value-distribution criterion for the class $L$ Log $L$, and some related questions, Ann. Inst. Fourier (Grenoble) 35 (1985), 127–150.
  • B. Gramsch, Integration und holomorphe Funktionen in lokalbeschränkten Räumen, Math. Annalen 162 (1965), 190–210.
  • L. J. Hanson, Hardy classes and ranges of functions, Mich. Math. J. 17 (1970), 235–248.
  • W. K. Hayman, Multivalent Functions, Cambridge Tracts in Mathematics #100, second ed., Cambridge University Press, 1994.
  • H. Kamowitz, The spectra of composition operators on $H^p$, J. Funct. Anal. 18 (1975), 132–150.
  • G. Koenigs, Recherches sur les intégrales de certaines équationes functionelles, Annales Ecole Normale Superior (3) 1 (1884), Supplément, 3–41.
  • B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators on Hardy and Bergman spaces, Canadian J. Math. 38 (1986), 878–906.
  • E. A. Nordgren, Composition operators, Canadian J. Math. 20 (1968), 442–449.
  • P. Poggi-Corradini, Hardy spaces and twisted sectors for geometric models, Trans. Amer. Math. Soc., to appear.
  • P. Poggi-Corradini, The Hardy class of geometric models and the essential spectral radius of composition operators, preprint.
  • P. Poggi-Corradini, The Hardy class of Koenigs maps, preprint.
  • Ch. Pommerenke, On the iteration of analytic functions in a half-plane I, J. London Math Soc. (2) 19 (1979), 439–447.
  • W. Rudin, Real and Complex Analysis, 3rd edition, McGraw Hill, New York, 1987.
  • J. V. Ryff, Subordinate $H^p$ functions, Duke Math. J. 33 (1966), 347–354.
  • H. Schwartz, Composition operators on $H^p$, Thesis: University of Toledo, 1969.
  • J. H. Shapiro, The essential norm of a composition operator, Annals of Math. 125 (1987), 375–404.
  • J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
  • J. H. Shapiro, The Riesz and Fredholm Theories in Linear Topological Spaces, preprint.
  • J. H. Shapiro, W. Smith, and D. A. Stegenga, Geometric models and compactness of composition operators, J. Funct. Anal. 127 (1995), 21–62.
  • G. Valiron, Sur l’iteration des fonctions holomorphes dans un demi-plan, Bull des Sci. Math. (2) 55 (1931), 105–128.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 30D05, 47B38

Retrieve articles in all journals with MSC (1991): 30D05, 47B38


Additional Information

Paul S. Bourdon
Affiliation: Department of Mathematics, Washington and Lee University, Lexington, Virginia 24450
Email: pbourdon@wlu.edu

Joel H. Shapiro
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: shapiro@math.msu.edu

Received by editor(s): January 22, 1996
Received by editor(s) in revised form: June 19, 1996
Additional Notes: The first author was supported in part by NSF grant DMS-9401206.
The second author was supported in part by NSF grant DMS-9424417
Article copyright: © Copyright 1997 American Mathematical Society