Generalizations of Müntz’s Theorem via a Remez-type inequality for Müntz spaces
HTML articles powered by AMS MathViewer
- by Peter Borwein and Tamás Erdélyi
- J. Amer. Math. Soc. 10 (1997), 327-349
- DOI: https://doi.org/10.1090/S0894-0347-97-00225-7
Abstract:
The principal result of this paper is a Remez-type inequality for Müntz polynomials: \begin{equation*}p(x) := \sum ^{n}_{i=0} a_{i} x^{\lambda _{i}}, \end{equation*} or equivalently for Dirichlet sums: \begin{equation*}P(t) := \sum ^{n}_{i=0}{a_{i} e^{-\lambda _{i} t}} ,\end{equation*} where $0 = \lambda _{0} < \lambda _{1} < \lambda _{2} <\cdots$. The most useful form of this inequality states that for every sequence $(\lambda _{i})^{\infty }_{i=0}$ satisfying $\sum ^{\infty }_{i=1} 1/\lambda _{i} < \infty$, there is a constant $c$ depending only on $\Lambda : = (\lambda _{i})^{\infty }_{i=0}$ and $s$ (and not on $n$, $\varrho$, or $A$) so that \begin{equation*}\|p\|_{[0, \varrho ]} \leq c \|p\|_{A}\end{equation*} for every Müntz polynomial $p$, as above, associated with $(\lambda _{i})^{\infty }_{i=0}$, and for every set $A \subset [\varrho ,1]$ of Lebesgue measure at least $s > 0$. Here $\|\cdot \|_{A}$ denotes the supremum norm on $A$. This Remez-type inequality allows us to resolve two reasonably long-standing conjectures. The first conjecture it lets us resolve is due to D. J. Newman and dates from 1978. It asserts that if $\sum ^{\infty }_{i=1} 1/\lambda _{i} < \infty$, then the set of products $\{ p_{1} p_{2} : p_{1}, p_{2} \in \text {span} \{x^{\lambda _{0}}, x^{\lambda _{1}}, \ldots \}\}$ is not dense in $C[0,1]$. The second is a complete extension of Müntz’s classical theorem on the denseness of Müntz spaces in $C[0,1]$ to denseness in $C(A)$, where $A \subset [0,\infty )$ is an arbitrary compact set with positive Lebesgue measure. That is, for an arbitrary compact set $A \subset [0,\infty )$ with positive Lebesgue measure, $\text {span} \{ x^{\lambda _{0}}, x^{\lambda _{1}}, \ldots \}$ is dense in $C(A)$ if and only if $\sum ^{\infty }_{i=1} 1/\lambda _{i} =\infty$. Several other interesting consequences are also presented.References
- J. M. Anderson, Müntz-Szasz type approximation and the angular growth of lacunary integral functions, Trans. Amer. Math. Soc. 169 (1972), 237–248. MR 310259, DOI 10.1090/S0002-9947-1972-0310259-4
- Joseph Bak and Donald J. Newman, Rational combinations of $x^{\lambda k}$, $\lambda _{k}\geq 0$ are always dense in $C[0, 1]$, J. Approximation Theory 23 (1978), no. 2, 155–157. MR 487180, DOI 10.1016/0021-9045(78)90101-6
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Peter Borwein, Zeros of Chebyshev polynomials in Markov systems, J. Approx. Theory 63 (1990), no. 1, 56–64. MR 1074081, DOI 10.1016/0021-9045(90)90113-5
- Peter B. Borwein, Variations on Müntz’s theme, Canad. Math. Bull. 34 (1991), no. 3, 305–310. MR 1127751, DOI 10.4153/CMB-1991-050-8
- Peter Borwein and Tamás Erdélyi, Notes on lacunary Müntz polynomials, Israel J. Math. 76 (1991), no. 1-2, 183–192. MR 1177339, DOI 10.1007/BF02782851
- Peter Borwein and Tamás Erdélyi, Lacunary Müntz systems, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 3, 361–374. MR 1242750, DOI 10.1017/S0013091500018472
- P. B. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
- Peter Borwein, Tamás Erdélyi, and John Zhang, Müntz systems and orthogonal Müntz-Legendre polynomials, Trans. Amer. Math. Soc. 342 (1994), no. 2, 523–542. MR 1227091, DOI 10.1090/S0002-9947-1994-1227091-4
- K. A. Hirsch, On skew-groups, Proc. London Math. Soc. 45 (1939), 357–368. MR 0000036, DOI 10.1112/plms/s2-45.1.357
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4
- Tamás Erdélyi, Remez-type inequalities on the size of generalized polynomials, J. London Math. Soc. (2) 45 (1992), no. 2, 255–264. MR 1171553, DOI 10.1112/jlms/s2-45.2.255
- Tamás Erdélyi, Remez-type inequalities and their applications, J. Comput. Appl. Math. 47 (1993), no. 2, 167–209. MR 1237312, DOI 10.1016/0377-0427(93)90003-T
- G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971.
- Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922
- W. A. J. Luxemburg and J. Korevaar, Entire functions and Müntz-Szász type approximation, Trans. Amer. Math. Soc. 157 (1971), 23–37. MR 281929, DOI 10.1090/S0002-9947-1971-0281929-0
- C. Müntz, Über den Approximationsatz von Weierstrass, H. A. Schwartz Festschrift, Berlin, 1914.
- D. J. Newman, Derivative bounds for Müntz polynomials, J. Approximation Theory 18 (1976), no. 4, 360–362. MR 430604, DOI 10.1016/0021-9045(76)90007-1
- Donald J. Newman, Approximation with rational functions, CBMS Regional Conference Series in Mathematics, vol. 41, Conference Board of the Mathematical Sciences, Washington, D.C., 1979. Expository lectures from the CBMS Regional Conference held at the University of Rhode Island, Providence, R.I., June 12–16, 1978. MR 539314
- Günther Nürnberger, Approximation by spline functions, Springer-Verlag, Berlin, 1989. MR 1022194, DOI 10.1007/978-3-642-61342-5
- E. J. Remez, Sur une propriété des polynômes de Tchebyscheff, Comm. Inst. Sci. Kharkow 13 (1936), 93–95.
- Theodore J. Rivlin, Chebyshev polynomials, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. From approximation theory to algebra and number theory. MR 1060735
- Laurent Schwartz, Étude des sommes d’exponentielles. 2ième éd, Publications de l’Institut de Mathématique de l’Université de Strasbourg, V. Actualités Sci. Ind., Hermann, Paris, 1959 (French). MR 0106383
- Philip W. Smith, An improvement theorem for Descartes systems, Proc. Amer. Math. Soc. 70 (1978), no. 1, 26–30. MR 467118, DOI 10.1090/S0002-9939-1978-0467118-7
- G. Somorjai, A Müntz-type problem for rational approximation, Acta Math. Acad. Sci. Hungar. 27 (1976), no. 1-2, 197–199. MR 430617, DOI 10.1007/BF01896775
- O. Szász, Über die Approximation steliger Funktionen durch lineare Aggregate von Potenzen, vol. 77, 1916, pp. 482–496.
- G. Szegő, On the density of quotients of lacunary polynomials, Acta Math. Hung. 30 (1922), 149–154.
- A. K. Taslakyan, Some properties of Legendre quasipolynomials with respect to a Müntz system, Mathematics, No. 2 (Russian), Erevan. Univ., Erevan, 1984, pp. 179–189 (Russian, with Armenian summary). MR 875260
- M. von Golitschek, A short proof of Müntz’s theorem, J. Approx. Theory 39 (1983), no. 4, 394–395. MR 723231, DOI 10.1016/0021-9045(83)90083-7
Bibliographic Information
- Peter Borwein
- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Email: pborwein@cecm.sfu.ca
- Tamás Erdélyi
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- Email: terdelyi@math.tamu.edu
- Received by editor(s): June 10, 1994
- Received by editor(s) in revised form: September 20, 1996
- Additional Notes: Research of the first author was supported, in part, by NSERC of Canada. Research of the second author was supported, in part, by NSF under Grant No. DMS-9024901 and conducted while an NSERC International Fellow at Simon Fraser University.
- © Copyright 1997 by the authors
- Journal: J. Amer. Math. Soc. 10 (1997), 327-349
- MSC (1991): Primary 41A17; Secondary 30B10, 26D15
- DOI: https://doi.org/10.1090/S0894-0347-97-00225-7
- MathSciNet review: 1415318
Dedicated: Dedicated to the memory of Paul Erdős