Mod 2 and mod 5 icosahedral representations
Authors:
N. I. Shepherd-Barron and R. Taylor
Journal:
J. Amer. Math. Soc. 10 (1997), 283-298
MSC (1991):
Primary 11F41, 11G10, 14G05, 14G35
DOI:
https://doi.org/10.1090/S0894-0347-97-00226-9
MathSciNet review:
1415322
Full-text PDF Free Access
References | Similar Articles | Additional Information
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Avner Ash and Glenn Stevens, Modular forms in characteristic $l$ and special values of their $L$-functions, Duke Math. J. 53 (1986), no. 3, 849–868. MR 860675, DOI https://doi.org/10.1215/S0012-7094-86-05346-9
- F. Diamond, On deformation rings and Hecke rings, Annals of Math. (2) 144 (1996), 137-166.
- Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155
- P. Deligne and M. Rapoport, Correction to: “Les schémas de modules de courbes elliptiques” (Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 143–316, Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973), Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. p. 149. Lecture Notes in Math., Vol. 476 (French). MR 0382292
- Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66 (French). MR 244269
- Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66 (French). MR 244269
- C.Hermite, Sur la résolution de l’équation du cinqième degré, Comptes Rendus 46 (1858).
- F. Klein, Lectures on the icosahedron (transl. G.G. Morrice), Trübner, 1888.
- Robert P. Langlands, Base change for ${\rm GL}(2)$, Annals of Mathematics Studies, No. 96, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 574808
- David Mumford, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR 742776
- K. Rubin and A. Silverberg, Families of elliptic curves with constant mod $p$ representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 148–161. MR 1363500
- Jean-Pierre Serre, Œuvres. Vol. I, Springer-Verlag, Berlin, 1986 (French). 1949–1959. MR 926689
- Jean-Pierre Serre, Sur les représentations modulaires de degré $2$ de ${\rm Gal}(\overline {\bf Q}/{\bf Q})$, Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, DOI https://doi.org/10.1215/S0012-7094-87-05413-5
- Jerrold Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173–175. MR 621884, DOI https://doi.org/10.1090/S0273-0979-1981-14936-3
- Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, DOI https://doi.org/10.2307/2118560
- Gerard van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 16, Springer-Verlag, Berlin, 1988. MR 930101
- Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI https://doi.org/10.2307/2118559
Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 11F41, 11G10, 14G05, 14G35
Retrieve articles in all journals with MSC (1991): 11F41, 11G10, 14G05, 14G35
Additional Information
N. I. Shepherd-Barron
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Cambridge University, 16 Mill Lane, Cambridge CB2 1SB, United Kingdom
Email:
nist@pmms.cam.ac.uk
R. Taylor
Address at time of publication:
Department of Mathematics, Harvard University, 1 Oxford St., Cambridge, Massachusetts 02138
Email:
rtaylor@math.harvard.edu
Received by editor(s):
June 10, 1996
Additional Notes:
The second author was partially supported by the EPSRC
Article copyright:
© Copyright 1997
American Mathematical Society