A polynomially bounded operator on Hilbert space which is not similar to a contraction
HTML articles powered by AMS MathViewer
- by Gilles Pisier
- J. Amer. Math. Soc. 10 (1997), 351-369
- DOI: https://doi.org/10.1090/S0894-0347-97-00227-0
- PDF | Request permission
Abstract:
Let $\varepsilon >0$. We prove that there exists an operator $T_{\varepsilon }:\ell _{2}\to \ell _{2}$ such that for any polynomial $P$ we have $\|{P(T_{\varepsilon })}\| \leq (1+\varepsilon ) \|{P}\|_{\infty }$, but $T_{\varepsilon }$ is not similar to a contraction, i.e. there does not exist an invertible operator $S: \ell _{2}\to \ell _{2}$ such that $\|{S^{-1}T_{\varepsilon }S}\|\leq 1$. This answers negatively a question attributed to Halmos after his well-known 1970 paper (“Ten problems in Hilbert space"). We also give some related finite-dimensional estimates.References
- A. B. Aleksandrov and V. V. Peller, Hankel operators and similarity to a contraction, Internat. Math. Res. Notices 1996, no. 6, 263–275.
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum-statistical mechanics. II, Texts and Monographs in Physics, Springer-Verlag, New York-Berlin, 1981. Equilibrium states. Models in quantum-statistical mechanics. MR 611508
- J. Bourgain, New Banach space properties of the disc algebra and $H^{\infty }$, Acta Math. 152 (1984), no. 1-2, 1–48. MR 736210, DOI 10.1007/BF02392189
- J. Bourgain, On the similarity problem for polynomially bounded operators on Hilbert space, Israel J. Math. 54 (1986), no. 2, 227–241. MR 852479, DOI 10.1007/BF02764943
- David P. Blecher and Vern I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), no. 2, 262–292. MR 1121615, DOI 10.1016/0022-1236(91)90042-4
- D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. MR 365692, DOI 10.1214/aop/1176997023
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Richard Durrett, Brownian motion and martingales in analysis, Wadsworth Mathematics Series, Wadsworth International Group, Belmont, CA, 1984. MR 750829
- Edward G. Effros and Zhong-Jin Ruan, A new approach to operator spaces, Canad. Math. Bull. 34 (1991), no. 3, 329–337. MR 1127754, DOI 10.4153/CMB-1991-053-x
- S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788–790. MR 165362, DOI 10.1090/S0002-9939-1964-0165362-X
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- C. Foias and J. P. Williams, On a class of polynomially bounded operators, Preprint (unpublished, 1979 or 1980?).
- Adriano M. Garsia, Martingale inequalities: Seminar notes on recent progress, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. MR 0448538
- Uffe Haagerup, Injectivity and decomposition of completely bounded maps, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp. 170–222. MR 799569, DOI 10.1007/BFb0074885
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- P. R. Halmos, On Foguel’s answer to Nagy’s question, Proc. Amer. Math. Soc. 15 (1964), 791–793. MR 165363, DOI 10.1090/S0002-9939-1964-0165363-1
- M. Junge and G. Pisier, Bilinear forms on exact operator spaces and $B(H)\otimes B(H)$, Geom. Funct. Anal. 5 (1995), no. 2, 329–363. MR 1334870, DOI 10.1007/BF01895670
- A. Lebow, A power-bounded operator that is not polynomially bounded, Michigan Math. J. 15 (1968), 397–399. MR 236753
- Françoise Lust-Piquard and Gilles Pisier, Noncommutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), no. 2, 241–260. MR 1150376, DOI 10.1007/BF02384340
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- Vern I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), no. 1, 1–17. MR 733029, DOI 10.1016/0022-1236(84)90014-4
- V. Paulsen, The maximal operator space of a normed space, Proc. Edinburgh Math. Soc. (2) 39 (1996), no. 2, 309–323.
- Lavon B. Page, Bounded and compact vectorial Hankel operators, Trans. Amer. Math. Soc. 150 (1970), 529–539. MR 273449, DOI 10.1090/S0002-9947-1970-0273449-3
- Vladimir V. Peller, Estimates of functions of power bounded operators on Hilbert spaces, J. Operator Theory 7 (1982), no. 2, 341–372. MR 658618
- V. P. Havin, S. V. Hruščëv, and N. K. Nikol′skiĭ (eds.), Linear and complex analysis problem book, Lecture Notes in Mathematics, vol. 1043, Springer-Verlag, Berlin, 1984. 199 research problems. MR 734178, DOI 10.1007/BFb0072183
- Vladimir V. Peller, Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class $\gamma _{p}$, Integral Equations Operator Theory 5 (1982), no. 2, 244–272. MR 647702, DOI 10.1007/BF01694041
- Karl Endel Petersen, Brownian motion, Hardy spaces and bounded mean oscillation, London Mathematical Society Lecture Note Series, No. 28, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0651556
- Gilles Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics, vol. 60, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 829919, DOI 10.1090/cbms/060
- Gilles Pisier, Factorization of operator valued analytic functions, Adv. Math. 93 (1992), no. 1, 61–125. MR 1160843, DOI 10.1016/0001-8708(92)90025-G
- Gilles Pisier, Multipliers and lacunary sets in non-amenable groups, Amer. J. Math. 117 (1995), no. 2, 337–376. MR 1323679, DOI 10.2307/2374918
- G. Pisier, Similarity problems and completely bounded maps, Springer Lecture Notes 1618 (1995).
- Guido Weiss and Stephen Wainger (eds.), Harmonic analysis in Euclidean spaces. Part 1, Proceedings of Symposia in Pure Mathematics, XXXV, Part 1, American Mathematical Society, Providence, R.I., 1979. Dedicated to Nestor M. Rivière. MR 545233
- Donald Sarason, Generalized interpolation in $H^{\infty }$, Trans. Amer. Math. Soc. 127 (1967), 179–203. MR 208383, DOI 10.1090/S0002-9947-1967-0208383-8
- Béla Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 89–93 (English, with Russian and Hungarian summaries). MR 108722
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
- James D. Stafney, A class of operators and similarity to contractions, Michigan Math. J. 41 (1994), no. 3, 509–521. MR 1297705, DOI 10.1307/mmj/1029005076
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
- S. R. Treil′, Geometric methods in spectral theory of vector-valued functions: some recent results, Toeplitz operators and spectral function theory, Oper. Theory Adv. Appl., vol. 42, Birkhäuser, Basel, 1989, pp. 209–280. MR 1030053, DOI 10.1007/978-3-0348-5587-7_{5}
Bibliographic Information
- Gilles Pisier
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843; Université Paris VI, Equipe d’Analyse, Case 186, 75252 Paris Cedex 05, France
- MR Author ID: 140010
- Email: gip@ccr.jussieu.fr
- Received by editor(s): March 11, 1996
- Received by editor(s) in revised form: October 11, 1996
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 351-369
- MSC (1991): Primary 47A20, 47B35, 47D25, 47B47; Secondary 47A56, 42B30
- DOI: https://doi.org/10.1090/S0894-0347-97-00227-0
- MathSciNet review: 1415321