## Local exactness in a class of differential complexes

HTML articles powered by AMS MathViewer

- by Sagun Chanillo and François Treves PDF
- J. Amer. Math. Soc.
**10**(1997), 393-426 Request permission

## Abstract:

The article studies the local exactness at level $q$ $(1\le q\le n)$ in the differential complex defined by $n$ commuting, linearly independent real-analytic complex vector fields $L_1,\dotsc ,L_n$ in $n+1$ independent variables. Locally the system $\{L_1,\dotsc ,L_n\}$ admits a first integral $Z$, i.e., a $\mathcal {C}^\omega$ complex function $Z$ such that $L_1Z=\cdots =L_nZ=0$ and $dZ\ne 0$. The germs of the “level sets” of $Z$, the sets $Z=z_0\in \mathbb {C}$, are invariants of the structure. It is proved that the vanishing of the (reduced) singular homology, in dimension $q-1$, of these level sets is sufficient for local exactness at the level $q$. The condition was already known to be necessary.## References

- M. S. Baouendi and F. Trèves,
*A property of the functions and distributions annihilated by a locally integrable system of complex vector fields*, Ann. of Math. (2)**113**(1981), no. 2, 387–421. MR**607899**, DOI 10.2307/2006990 - Sagun Chanillo,
*The first eigenvalue of analytic level surfaces on spheres*, Math. Res. Lett.**1**(1994), no. 2, 159–166. MR**1266754**, DOI 10.4310/MRL.1994.v1.n2.a3 - S. Chanillo and F. Treves,
*On the lowest eigenvalue of the Hodge Laplacian*, J. Diff. Geom., to appear. - Paulo Cordaro and Jorge Hounie,
*On local solvability of underdetermined systems of vector fields*, Amer. J. Math.**112**(1990), no. 2, 243–270. MR**1047299**, DOI 10.2307/2374715 - Paulo Cordaro and François Trèves,
*Homology and cohomology in hypo-analytic structures of the hypersurface type*, J. Geom. Anal.**1**(1991), no. 1, 39–70. MR**1097935**, DOI 10.1007/BF02938114 - Paulo D. Cordaro and François Trèves,
*Hyperfunctions on hypo-analytic manifolds*, Annals of Mathematics Studies, vol. 136, Princeton University Press, Princeton, NJ, 1994. MR**1311923** - Paulo D. Cordaro and François Trèves,
*Necessary and sufficient conditions for the local solvability in hyperfunctions of a class of systems of complex vector fields*, Invent. Math.**120**(1995), no. 2, 339–360. MR**1329045**, DOI 10.1007/BF01241132 - Robert M. Hardt,
*Slicing and intersection theory for chains associated with real analytic varieties*, Acta Math.**129**(1972), 75–136. MR**315561**, DOI 10.1007/BF02392214 - Robert M. Hardt,
*Triangulation of subanalytic sets and proper light subanalytic maps*, Invent. Math.**38**(1976/77), no. 3, 207–217. MR**454051**, DOI 10.1007/BF01403128 - Lars Hörmander,
*Propagation of singularities and semiglobal existence theorems for (pseudo)differential operators of principal type*, Ann. of Math. (2)**108**(1978), no. 3, 569–609. MR**512434**, DOI 10.2307/1971189 - Lars Hörmander,
*Pseudodifferential operators of principal type*, Singularities in boundary value problems (Proc. NATO Adv. Study Inst., Maratea, 1980) NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., vol. 65, Reidel, Dordrecht-Boston, Mass., 1981, pp. 69–96. MR**617227** - S. Łojasiewicz,
*Sur le problème de la division*, Studia Math.**18**(1959), 87–136 (French). MR**107168**, DOI 10.4064/sm-18-1-87-136 - —,
*Ensembles semi-analytiques*, IHES Notes, Paris, 1965. - G. A. Mendoza and F. Trèves,
*Local solvability in a class of overdetermined systems of linear PDE*, Duke Math. J.**63**(1991), no. 2, 355–377. MR**1115112**, DOI 10.1215/S0012-7094-91-06315-5 - L. Nirenberg and F. Treves,
*Solvability of a first order linear partial differential equation*, Comm. Pure Appl. Math.**16**(1963), 331–351. MR**163045**, DOI 10.1002/cpa.3160160308 *Séminaire Schwartz. 4e année, 1959/60. Unicité du problème de Cauchy. Division des distributions*, Faculté des Sciences de Paris, Paris, 1960 (French). MR**0124968**- H. J. Sussmann,
*Real analytic desingularization and subanalytic sets: an elementary approach*, Trans. Amer. Math. Soc.**317**(1990), no. 2, 417–461. MR**943608**, DOI 10.1090/S0002-9947-1990-0943608-5 - François Treves,
*Study of a model in the theory of complexes of pseudodifferential operators*, Ann. of Math. (2)**104**(1976), no. 2, 269–324. MR**426068**, DOI 10.2307/1971048 - François Trèves,
*On the local solvability and the local integrability of systems of vector fields*, Acta Math.**151**(1983), no. 1-2, 1–38. MR**716369**, DOI 10.1007/BF02393203 - François Trèves,
*Hypo-analytic structures*, Princeton Mathematical Series, vol. 40, Princeton University Press, Princeton, NJ, 1992. Local theory. MR**1200459** - R. Weitzenböck,
*Invariantentheorie*, Groningen, Noordhoff, 1923.

## Additional Information

**Sagun Chanillo**- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- MR Author ID: 47385
- Email: chanillo@math.rutgers.edu
**François Treves**- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- Email: treves@math.rutgers.edu
- Received by editor(s): May 17, 1996
- Received by editor(s) in revised form: November 11, 1996
- Additional Notes: The first author was partially supported by NSF Grant DMS-9401782, and the second author by NSF Grant DMS-9201980
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**10**(1997), 393-426 - MSC (1991): Primary 35A07, 35F05
- DOI: https://doi.org/10.1090/S0894-0347-97-00231-2
- MathSciNet review: 1423030