Local exactness in a class of differential complexes
HTML articles powered by AMS MathViewer
- by Sagun Chanillo and François Treves
- J. Amer. Math. Soc. 10 (1997), 393-426
- DOI: https://doi.org/10.1090/S0894-0347-97-00231-2
- PDF | Request permission
Abstract:
The article studies the local exactness at level $q$ $(1\le q\le n)$ in the differential complex defined by $n$ commuting, linearly independent real-analytic complex vector fields $L_1,\dotsc ,L_n$ in $n+1$ independent variables. Locally the system $\{L_1,\dotsc ,L_n\}$ admits a first integral $Z$, i.e., a $\mathcal {C}^\omega$ complex function $Z$ such that $L_1Z=\cdots =L_nZ=0$ and $dZ\ne 0$. The germs of the “level sets” of $Z$, the sets $Z=z_0\in \mathbb {C}$, are invariants of the structure. It is proved that the vanishing of the (reduced) singular homology, in dimension $q-1$, of these level sets is sufficient for local exactness at the level $q$. The condition was already known to be necessary.References
- M. S. Baouendi and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), no. 2, 387–421. MR 607899, DOI 10.2307/2006990
- Sagun Chanillo, The first eigenvalue of analytic level surfaces on spheres, Math. Res. Lett. 1 (1994), no. 2, 159–166. MR 1266754, DOI 10.4310/MRL.1994.v1.n2.a3
- S. Chanillo and F. Treves, On the lowest eigenvalue of the Hodge Laplacian, J. Diff. Geom., to appear.
- Paulo Cordaro and Jorge Hounie, On local solvability of underdetermined systems of vector fields, Amer. J. Math. 112 (1990), no. 2, 243–270. MR 1047299, DOI 10.2307/2374715
- Paulo Cordaro and François Trèves, Homology and cohomology in hypo-analytic structures of the hypersurface type, J. Geom. Anal. 1 (1991), no. 1, 39–70. MR 1097935, DOI 10.1007/BF02938114
- Paulo D. Cordaro and François Trèves, Hyperfunctions on hypo-analytic manifolds, Annals of Mathematics Studies, vol. 136, Princeton University Press, Princeton, NJ, 1994. MR 1311923
- Paulo D. Cordaro and François Trèves, Necessary and sufficient conditions for the local solvability in hyperfunctions of a class of systems of complex vector fields, Invent. Math. 120 (1995), no. 2, 339–360. MR 1329045, DOI 10.1007/BF01241132
- Robert M. Hardt, Slicing and intersection theory for chains associated with real analytic varieties, Acta Math. 129 (1972), 75–136. MR 315561, DOI 10.1007/BF02392214
- Robert M. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1976/77), no. 3, 207–217. MR 454051, DOI 10.1007/BF01403128
- Lars Hörmander, Propagation of singularities and semiglobal existence theorems for (pseudo)differential operators of principal type, Ann. of Math. (2) 108 (1978), no. 3, 569–609. MR 512434, DOI 10.2307/1971189
- Lars Hörmander, Pseudodifferential operators of principal type, Singularities in boundary value problems (Proc. NATO Adv. Study Inst., Maratea, 1980) NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., vol. 65, Reidel, Dordrecht-Boston, Mass., 1981, pp. 69–96. MR 617227
- S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87–136 (French). MR 107168, DOI 10.4064/sm-18-1-87-136
- —, Ensembles semi-analytiques, IHES Notes, Paris, 1965.
- G. A. Mendoza and F. Trèves, Local solvability in a class of overdetermined systems of linear PDE, Duke Math. J. 63 (1991), no. 2, 355–377. MR 1115112, DOI 10.1215/S0012-7094-91-06315-5
- L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math. 16 (1963), 331–351. MR 163045, DOI 10.1002/cpa.3160160308
- Séminaire Schwartz. 4e année, 1959/60. Unicité du problème de Cauchy. Division des distributions, Faculté des Sciences de Paris, Paris, 1960 (French). MR 0124968
- H. J. Sussmann, Real analytic desingularization and subanalytic sets: an elementary approach, Trans. Amer. Math. Soc. 317 (1990), no. 2, 417–461. MR 943608, DOI 10.1090/S0002-9947-1990-0943608-5
- François Treves, Study of a model in the theory of complexes of pseudodifferential operators, Ann. of Math. (2) 104 (1976), no. 2, 269–324. MR 426068, DOI 10.2307/1971048
- François Trèves, On the local solvability and the local integrability of systems of vector fields, Acta Math. 151 (1983), no. 1-2, 1–38. MR 716369, DOI 10.1007/BF02393203
- François Trèves, Hypo-analytic structures, Princeton Mathematical Series, vol. 40, Princeton University Press, Princeton, NJ, 1992. Local theory. MR 1200459
- R. Weitzenböck, Invariantentheorie, Groningen, Noordhoff, 1923.
Bibliographic Information
- Sagun Chanillo
- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- MR Author ID: 47385
- Email: chanillo@math.rutgers.edu
- François Treves
- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- Email: treves@math.rutgers.edu
- Received by editor(s): May 17, 1996
- Received by editor(s) in revised form: November 11, 1996
- Additional Notes: The first author was partially supported by NSF Grant DMS-9401782, and the second author by NSF Grant DMS-9201980
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 393-426
- MSC (1991): Primary 35A07, 35F05
- DOI: https://doi.org/10.1090/S0894-0347-97-00231-2
- MathSciNet review: 1423030