The topological uniqueness of complete one-ended minimal surfaces and Heegaard surfaces in $\mathbb {R}^3$
HTML articles powered by AMS MathViewer
- by Charles Frohman and William H. Meeks III
- J. Amer. Math. Soc. 10 (1997), 495-512
- DOI: https://doi.org/10.1090/S0894-0347-97-00215-4
- PDF | Request permission
References
- Michel Boileau and Jean-Pierre Otal, Sur les scindements de Heegaard du tore $T^3$, J. Differential Geom. 32 (1990), no. 1, 209–233 (French, with English summary). MR 1064873
- Francis Bonahon and Jean-Pierre Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 451–466 (1984) (French). MR 740078, DOI 10.24033/asens.1455
- Michael Callahan, David Hoffman, and William H. Meeks III, The structure of singly-periodic minimal surfaces, Invent. Math. 99 (1990), no. 3, 455–481. MR 1032877, DOI 10.1007/BF01234428
- A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275–283. MR 918537, DOI 10.1016/0166-8641(87)90092-7
- M. do Carmo and C. K. Peng, Stable minimal surfaces in $\bfR ^3$ are planes, Bulletin of the AMS 1 (1979), 903–906.
- D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), no. 1, 121–132. MR 808112, DOI 10.1007/BF01394782
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- Michael Freedman, Joel Hass, and Peter Scott, Least area incompressible surfaces in $3$-manifolds, Invent. Math. 71 (1983), no. 3, 609–642. MR 695910, DOI 10.1007/BF02095997
- Charles Frohman, Minimal surfaces and Heegaard splittings of the three-torus, Pacific J. Math. 124 (1986), no. 1, 119–130. MR 850670, DOI 10.2140/pjm.1986.124.119
- Charles Frohman, The topological uniqueness of triply periodic minimal surfaces in $\textbf {R}^3$, J. Differential Geom. 31 (1990), no. 1, 277–283. MR 1030674
- Charles Frohman, Heegaard splittings of the three-ball, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 123–131. MR 1184407
- Charles Frohman and Joel Hass, Unstable minimal surfaces and Heegaard splittings, Invent. Math. 95 (1989), no. 3, 529–540. MR 979363, DOI 10.1007/BF01393888
- Robert Hardt and Leon Simon, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. (2) 110 (1979), no. 3, 439–486. MR 554379, DOI 10.2307/1971233
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619
- Stefan Hildebrandt, Boundary behavior of minimal surfaces, Arch. Rational Mech. Anal. 35 (1969), 47–82. MR 248650, DOI 10.1007/BF00248494
- David Hoffman, Fu Sheng Wei, and Hermann Karcher, Adding handles to the helicoid, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 77–84. MR 1193537, DOI 10.1090/S0273-0979-1993-00401-4
- D. Hoffman and W. H. Meeks III, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), no. 2, 373–377. MR 1062966, DOI 10.1007/BF01231506
- H. Blaine Lawson Jr., The unknottedness of minimal embeddings, Invent. Math. 11 (1970), 183–187. MR 287447, DOI 10.1007/BF01404649
- William H. Meeks III, The topological uniqueness of minimal surfaces in three-dimensional Euclidean space, Topology 20 (1981), no. 4, 389–410. MR 617373, DOI 10.1016/0040-9383(81)90021-5
- William H. Meeks III, The theory of triply periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990), no. 3, 877–936. MR 1078743, DOI 10.1512/iumj.1990.39.39043
- William H. Meeks III and Harold Rosenberg, The maximum principle at infinity for minimal surfaces in flat three manifolds, Comment. Math. Helv. 65 (1990), no. 2, 255–270. MR 1057243, DOI 10.1007/BF02566606
- W. H. Meeks III, L. Simon, and S. T. Yau, The existence of embedded minimal surfaces, exotic spheres and positive Ricci curvature, Annals of Math. 116 (1982), 221–259.
- William H. Meeks III and Shing Tung Yau, The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma, Topology 21 (1982), no. 4, 409–442. MR 670745, DOI 10.1016/0040-9383(82)90021-0
- William W. Meeks III and Shing Tung Yau, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z. 179 (1982), no. 2, 151–168. MR 645492, DOI 10.1007/BF01214308
- William H. Meeks III and Shing-Tung Yau, The topological uniqueness of complete minimal surfaces of finite topological type, Topology 31 (1992), no. 2, 305–316. MR 1167172, DOI 10.1016/0040-9383(92)90023-B
- Richard Schoen, Estimates for stable minimal surfaces in three-dimensional manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 111–126. MR 795231
- Richard M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791–809 (1984). MR 730928
- Peter Scott and Terry Wall, Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 137–203. MR 564422
- Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Transactions of the AMS 35 (1933), 88–111.
- Friedhelm Waldhausen, Heegaard-Zerlegungen der $3$-Sphäre, Topology 7 (1968), 195–203 (German). MR 227992, DOI 10.1016/0040-9383(68)90027-X
Bibliographic Information
- Charles Frohman
- Affiliation: Mathematics Department, University of Iowa, Iowa City, Iowa 52242
- MR Author ID: 234056
- ORCID: 0000-0003-0202-5351
- Email: frohman@math.uiowa.edu
- William H. Meeks III
- Affiliation: Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003
- MR Author ID: 122920
- Email: bill@gang.umass.edu
- Received by editor(s): February 1, 1991
- Received by editor(s) in revised form: June 1, 1995
- Additional Notes: This research was supported by the National Science Foundation grant DMS-8701736
The research described in this paper was supported by research grant DE-FG02-86ER250125 of the Applied Mathematical Science subprogram of the Office of Energy Research, U.S. Department of Energy, and National Science Foundation grants DMS-8900285 and DMS-9505101 - © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 495-512
- MSC (1991): Primary 57N12, 53A10
- DOI: https://doi.org/10.1090/S0894-0347-97-00215-4
- MathSciNet review: 1443545