Infinitesimal presentations of the Torelli groups
HTML articles powered by AMS MathViewer
- by Richard Hain
- J. Amer. Math. Soc. 10 (1997), 597-651
- DOI: https://doi.org/10.1090/S0894-0347-97-00235-X
- PDF | Request permission
References
- Mamoru Asada and Masanobu Kaneko, On the automorphism group of some pro-$l$ fundamental groups, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986) Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 137â159. MR 948240, DOI 10.2969/aspm/01210137
- Mamoru Asada and Hiroaki Nakamura, On graded quotient modules of mapping class groups of surfaces, Israel J. Math. 90 (1995), no. 1-3, 93â113. MR 1336318, DOI 10.1007/BF02783208
- Dror Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423â472. MR 1318886, DOI 10.1016/0040-9383(95)93237-2
- Gilbert Baumslag, On generalised free products, Math. Z. 78 (1962), 423â438. MR 140562, DOI 10.1007/BF01195185
- Joan S. Birman, Erratum: âBraids, links, and mapping class groupsâ (Ann. of Math. Studies, No. 82, Princeton Univ. Press, Princeton, N. J., 1974), Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1975. Based on lecture notes by James Cannon. MR 0425944
- Spencer Bloch and Igor KĆĂĆŸ, Mixed Tate motives, Ann. of Math. (2) 140 (1994), no. 3, 557â605. MR 1307897, DOI 10.2307/2118618
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Ăcole Norm. Sup. (4) 7 (1974), 235â272 (1975). MR 387496, DOI 10.24033/asens.1269
- Armand Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math., vol. 14, BirkhĂ€user, Boston, Mass., 1981, pp. 21â55. MR 642850
- A. Borel: Private communication, November 1994.
- James A. Carlson and Richard M. Hain, Extensions of variations of mixed Hodge structure, AstĂ©risque 179-180 (1989), 9, 39â65. Actes du Colloque de ThĂ©orie de Hodge (Luminy, 1987). MR 1042801
- Pierre Cartier, Construction combinatoire des invariants de Vassiliev-Kontsevich des nĆuds, C. R. Acad. Sci. Paris SĂ©r. I Math. 316 (1993), no. 11, 1205â1210 (French, with English and French summaries). MR 1221650
- K.-T. Chen: Extension of $C^\infty$ function algebra and Malcev completion of $\pi _1$, Adv. in Math. 23 (1977), 181â210.
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Richard M. Hain, The de Rham homotopy theory of complex algebraic varieties. I, $K$-Theory 1 (1987), no. 3, 271â324. MR 908993, DOI 10.1007/BF00533825
- Richard M. Hain, Algebraic cycles and extensions of variations of mixed Hodge structure, Complex geometry and Lie theory (Sundance, UT, 1989) Proc. Sympos. Pure Math., vol. 53, Amer. Math. Soc., Providence, RI, 1991, pp. 175â221. MR 1141202, DOI 10.1090/pspum/053/1141202
- R. Hain: Letter to Looijenga, June 4, 1991.
- Richard M. Hain, Completions of mapping class groups and the cycle $C-C^-$, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) Contemp. Math., vol. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 75â105. MR 1234261, DOI 10.1090/conm/150/01287
- Richard M. Hain, Torelli groups and geometry of moduli spaces of curves, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93) Math. Sci. Res. Inst. Publ., vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 97â143. MR 1397061
- R. Hain: The Hodge de Rham Theory of Relative Malcev Completion, preprint, 1995.
- Sylvain E. Cappell and Julius L. Shaneson, Linking numbers in branched covers, Four-manifold theory (Durham, N.H., 1982) Contemp. Math., vol. 35, Amer. Math. Soc., Providence, RI, 1984, pp. 165â179. MR 780578, DOI 10.1090/conm/035/780578
- Dennis Johnson, The structure of the Torelli group. I. A finite set of generators for ${\cal I}$, Ann. of Math. (2) 118 (1983), no. 3, 423â442. MR 727699, DOI 10.2307/2006977
- Dennis Johnson, The structure of the Torelli group. III. The abelianization of $\scr T$, Topology 24 (1985), no. 2, 127â144. MR 793179, DOI 10.1016/0040-9383(85)90050-3
- Dennis Johnson, A survey of the Torelli group, Low-dimensional topology (San Francisco, Calif., 1981) Contemp. Math., vol. 20, Amer. Math. Soc., Providence, RI, 1983, pp. 165â179. MR 718141, DOI 10.1090/conm/020/718141
- A. Kabanov: The second cohomology of moduli spaces of Riemann surfaces with twisted coefficients, Thesis, Duke University, 1995.
- A. Kabanov: The second cohomology with symplectic coefficients of the moduli space of smooth projective curves, Compositio Math., to appear.
- A. Kabanov: Stability of Schur functors, J. Algebra, to appear.
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- Radu BÇdescu, On a problem of Goursat, Gaz. Mat. 44 (1939), 571â577. MR 0000087
- Toshitake Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 4, 139â160 (English, with French summary). MR 927394, DOI 10.5802/aif.1114
- Toshitake Kohno and Takayuki Oda, The lower central series of the pure braid group of an algebraic curve, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986) Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 201â219. MR 948244, DOI 10.2969/aspm/01210201
- Maxim Kontsevich, Vassilievâs knot invariants, I. M. GelâČfand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 137â150. MR 1237836
- John P. Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970), 16â23. MR 251111, DOI 10.1016/0021-8693(70)90130-4
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783â787. MR 10, DOI 10.2307/2371336
- Geoffrey Mess, The Torelli groups for genus $2$ and $3$ surfaces, Topology 31 (1992), no. 4, 775â790. MR 1191379, DOI 10.1016/0040-9383(92)90008-6
- John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Ătudes Sci. Publ. Math. 48 (1978), 137â204. MR 516917, DOI 10.1007/BF02684316
- Shigeyuki Morita, On the structure and the homology of the Torelli group, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 5, 147â150. MR 1011856
- Shigeyuki Morita, Cassonâs invariant for homology $3$-spheres and characteristic classes of surface bundles. I, Topology 28 (1989), no. 3, 305â323. MR 1014464, DOI 10.1016/0040-9383(89)90011-6
- Shigeyuki Morita, On the structure of the Torelli group and the Casson invariant, Topology 30 (1991), no. 4, 603â621. MR 1133875, DOI 10.1016/0040-9383(91)90042-3
- Shigeyuki Morita, The extension of Johnsonâs homomorphism from the Torelli group to the mapping class group, Invent. Math. 111 (1993), no. 1, 197â224. MR 1193604, DOI 10.1007/BF01231286
- Shigeyuki Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993), no. 3, 699â726. MR 1224104, DOI 10.1215/S0012-7094-93-07017-2
- Hiroaki Nakamura, Naotake Takao, and Ryoichi Ueno, Some stability properties of TeichmĂŒller modular function fields with pro-$l$ weight structures, Math. Ann. 302 (1995), no. 2, 197â213. MR 1336334, DOI 10.1007/BF01444493
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611â633. MR 16, DOI 10.2307/1968946
- T. Oda: A lower bound for the weight graded quotients associated with the relative weight filtration on the TeichmĂŒller group, preprint, 1992.
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- Masanori Muta, Yoshiaki Taniguchi, and Kiyosi Yamaguti, Semi-direct products of general Lie triple systems, J. Fac. Internat. Stud. Cult. Kyushu Sangyo Univ. 3 (1995), 91â101. MR 1364568
- Christophe Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1231799
- Morihiko Saito, Mixed Hodge modules and admissible variations, C. R. Acad. Sci. Paris SĂ©r. I Math. 309 (1989), no. 6, 351â356 (English, with French summary). MR 1054250
- Jean-Pierre Serre, Lie algebras and Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1965. Lectures given at Harvard University, 1964. MR 0218496
- Dennis Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975), no. 3, 275â277. MR 383415, DOI 10.1016/0040-9383(75)90009-9
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Ătudes Sci. Publ. Math. 47 (1977), 269â331 (1978). MR 646078, DOI 10.1007/BF02684341
- Steven Zucker, Hodge theory with degenerating coefficients. $L_{2}$ cohomology in the PoincarĂ© metric, Ann. of Math. (2) 109 (1979), no. 3, 415â476. MR 534758, DOI 10.2307/1971221
Bibliographic Information
- Richard Hain
- Affiliation: Department of Mathematics, Duke University, Durham, North Carolina 27708-0320
- MR Author ID: 79695
- ORCID: 0000-0002-7009-6971
- Email: hain@math.duke.edu
- Received by editor(s): June 1, 1996
- Received by editor(s) in revised form: February 3, 1997
- Additional Notes: This work was supported in part by grants from the National Science Foundation.
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 597-651
- MSC (1991): Primary 14G15, 57M99; Secondary 20F99
- DOI: https://doi.org/10.1090/S0894-0347-97-00235-X
- MathSciNet review: 1431828