Quantum Schubert polynomials
HTML articles powered by AMS MathViewer
- by Sergey Fomin, Sergei Gelfand and Alexander Postnikov
- J. Amer. Math. Soc. 10 (1997), 565-596
- DOI: https://doi.org/10.1090/S0894-0347-97-00237-3
- PDF | Request permission
References
- Alexander Astashkevich and Vladimir Sadov, Quantum cohomology of partial flag manifolds $F_{n_1\cdots n_k}$, Comm. Math. Phys. 170 (1995), no. 3, 503–528. MR 1337131, DOI 10.1007/BF02099147
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933
- A. Bertram, Quantum Schubert calculus, Advances in Math. (to appear).
- S. C. Billey and M. Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995), 443–482.
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- C. Chevalley, Sur les décompositions cellulaires des espaces $G/B$, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 1–23 (French). With a foreword by Armand Borel. MR 1278698, DOI 10.1090/pspum/056.1/1278698
- Ionuţ Ciocan-Fontanine, Quantum cohomology of flag varieties, Internat. Math. Res. Notices 6 (1995), 263–277. MR 1344348, DOI 10.1155/S1073792895000213
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697, DOI 10.24033/asens.1261
- C. Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. 35 (1934), 396–443.
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- S. Fomin and A. N. Kirillov, Combinatorial $B_n$-analogues of Schubert polynomials, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3591–3620.
- S. Fomin, S. Gelfand, and A. Postnikov, Quantum Schubert polynomials, AMS electronic preprint AMSPPS #199605-14-008, April 1996.
- W. Fulton, Young tableaux with applications to representation theory and geometry, Cambridge University Press, 1996.
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, preprint alg-geom/9608011.
- Alexander Givental and Bumsig Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), no. 3, 609–641. MR 1328256, DOI 10.1007/BF02101846
- Bumsig Kim, Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings, Internat. Math. Res. Notices 1 (1995), 1–15. MR 1317639, DOI 10.1155/S1073792895000018
- B. Kim, On equivariant quantum cohomology, Intern. Math. Research Notices (1996), no. 17, 841–851.
- B. Kim, Quantum cohomology of flag manifolds $G/B$ and quantum Toda lattices, preprint alg-geom/9607001.
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244, DOI 10.1007/BF02101490
- B. Kostant, Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight $\rho$, Selecta Math. (N.S.) 2 (1996), 43–91.
- Alain Lascoux, Classes de Chern des variétés de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 5, 393–398 (French, with English summary). MR 684734
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- A. Lascoux and M.-P. Schützenberger, Fonctorialité des polynômes de Schubert, Invariant theory (Denton, TX, 1986) Contemp. Math., vol. 88, Amer. Math. Soc., Providence, RI, 1989, pp. 585–598 (French, with English summary). MR 1000001, DOI 10.1090/conm/088/1000001
- J. Li and G. Tian, The quantum cohomology of homogeneous varieties, J. Algebraic Geom. (to appear).
- I. G. Macdonald, Notes on Schubert polynomials, Publications LACIM, Montréal, 1991.
- D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. (3) 9 (1959), 253–286. MR 106911, DOI 10.1112/plms/s3-9.2.253
- P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; the $Q$-polynomial approach, Compositio Math. (to appear).
- Yongbin Ruan and Gang Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), no. 2, 259–367. MR 1366548
- Bernd Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993. MR 1255980, DOI 10.1007/978-3-7091-4368-1
- Cumrun Vafa, Topological mirrors and quantum rings, Essays on mirror manifolds, Int. Press, Hong Kong, 1992, pp. 96–119. MR 1191421
- Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310. MR 1144529
Bibliographic Information
- Sergey Fomin
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 230455
- ORCID: 0000-0002-4714-6141
- Email: fomin@math.mit.edu
- Sergei Gelfand
- Affiliation: American Mathematical Society, P.O.Box 6248, Providence, Rhode Island 02940-6248
- Email: sxg@ams.org
- Alexander Postnikov
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: apost@math.mit.edu
- Received by editor(s): July 8, 1996
- Received by editor(s) in revised form: December 23, 1996
- Additional Notes: The first author was supported in part by NSF grant DMS-9400914.
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 565-596
- MSC (1991): Primary 14M15; Secondary 05E15, 14N10
- DOI: https://doi.org/10.1090/S0894-0347-97-00237-3
- MathSciNet review: 1431829