Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Integral transforms with exponential kernels and Laplace transform
HTML articles powered by AMS MathViewer

by Masaki Kashiwara and Pierre Schapira
J. Amer. Math. Soc. 10 (1997), 939-972


Let $X \underset {f}{\longleftarrow } Z \underset {g}{\longrightarrow } Y$ be a correspondence of complex manifolds. We study integral transforms associated to kernels $\exp (\varphi )$, with $\varphi$ meromorphic on $Z$, acting on formal or moderate cohomologies. Our main application is the Laplace transform. In this case, $X$ is the projective compactification of the vector space $V \simeq \mathbb {C}^n$, $Y$ is its dual space, $Z=X\times Y$ and $\varphi (z,w) =\langle z,w \rangle$. We obtain the isomorphisms: \begin{align*} &F \otimes ^W \mathcal {O}_V \simeq F^\wedge [n] \otimes ^W \mathcal {O}_{V^*},\quad \operatorname {THom}(F,\mathcal {O}_V) \simeq \operatorname {THom}(F^\wedge [n],\mathcal {O}_{V^*}) \end{align*} where $F$ is a conic and $\mathbb {R}$-constructible sheaf on $V$ and $F^\wedge$ is its Fourier-Sato transform. Some applications are discussed.
  • Emmanuel Andronikof, Microlocalisation tempérée, Mém. Soc. Math. France (N.S.) 57 (1994), 176 (French, with English and French summaries). MR 1273991
  • Jan-Erik Björk, Analytic ${\scr D}$-modules and applications, Mathematics and its Applications, vol. 247, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1232191, DOI 10.1007/978-94-017-0717-6
  • Jean-Luc Brylinski, Bernard Malgrange, and Jean-Louis Verdier, Transformation de Fourier géométrique. II, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 5, 193–198 (French, with English summary). MR 854732
  • A. D’Agnolo and P. Schapira, The Radon-Penrose transform for $\mathcal {D}-$modules, J. of Functional Analysis, 139 (1996), 349–382.
  • A. D’Agnolo and P. Schapira, Leray’s quantization of projective duality, Duke Math. J. 84 (1996), 453–496.
  • L. Daia, La transformation de Fourier pour les $\mathcal {D}$-modules, Thèse, Université de Grenoble (1995).
  • J. Faraut and S. Gindikin, Private communication to P.S., (1995).
  • R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), no. 2, 327–358. MR 732550, DOI 10.1007/BF01388568
  • Masaki Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), no. 2, 319–365. MR 743382, DOI 10.2977/prims/1195181610
  • Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
  • M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mémoires Soc. Math. France, 64 (1996).
  • Masaki Kashiwara and Wilfried Schmid, Quasi-equivariant ${\scr D}$-modules, equivariant derived category, and representations of reductive Lie groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 457–488. MR 1327544, DOI 10.1007/978-1-4612-0261-5_{1}6
  • Nicholas M. Katz and Gérard Laumon, Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 361–418 (French). MR 823177
  • Bernard Malgrange, Transformation de Fourier géometrique, Astérisque 161-162 (1988), Exp. No. 692, 4, 133–150 (1989) (French). Séminaire Bourbaki, Vol. 1987/88. MR 992206
  • A. Martineau, Distributions et valeurs au bord des fonctions holomorphes, Theory of Distributions (Proc. Internat. Summer Inst., Lisbon, 1964) Inst. Gulbenkian Ci., Lisbon, 1964, pp. 193–326 (French). MR 0219754
  • Mikio Sato, Takahiro Kawai, and Masaki Kashiwara, Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Lecture Notes in Math., Vol. 287, Springer, Berlin, 1973, pp. 265–529. MR 0420735
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 32C38, 14F10, 44A10
  • Retrieve articles in all journals with MSC (1991): 32C38, 14F10, 44A10
Bibliographic Information
  • Masaki Kashiwara
  • Affiliation: RIMS, Kyoto University, Kyoto 606-01, Japan
  • MR Author ID: 98845
  • Pierre Schapira
  • Affiliation: Institut de Mathématiques, Université Paris VI, Case 82, 4 pl Jussieu, 75252 Paris, France
  • Email:
  • Received by editor(s): September 17, 1996
  • Received by editor(s) in revised form: May 23, 1997
  • © Copyright 1997 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 10 (1997), 939-972
  • MSC (1991): Primary 32C38, 14F10, 44A10
  • DOI:
  • MathSciNet review: 1447834