Integral transforms with exponential kernels and Laplace transform
HTML articles powered by AMS MathViewer
- by Masaki Kashiwara and Pierre Schapira
- J. Amer. Math. Soc. 10 (1997), 939-972
- DOI: https://doi.org/10.1090/S0894-0347-97-00245-2
- PDF | Request permission
Abstract:
Let $X \underset {f}{\longleftarrow } Z \underset {g}{\longrightarrow } Y$ be a correspondence of complex manifolds. We study integral transforms associated to kernels $\exp (\varphi )$, with $\varphi$ meromorphic on $Z$, acting on formal or moderate cohomologies. Our main application is the Laplace transform. In this case, $X$ is the projective compactification of the vector space $V \simeq \mathbb {C}^n$, $Y$ is its dual space, $Z=X\times Y$ and $\varphi (z,w) =\langle z,w \rangle$. We obtain the isomorphisms: \begin{align*} &F \otimes ^W \mathcal {O}_V \simeq F^\wedge [n] \otimes ^W \mathcal {O}_{V^*},\quad \operatorname {THom}(F,\mathcal {O}_V) \simeq \operatorname {THom}(F^\wedge [n],\mathcal {O}_{V^*}) \end{align*} where $F$ is a conic and $\mathbb {R}$-constructible sheaf on $V$ and $F^\wedge$ is its Fourier-Sato transform. Some applications are discussed.References
- Emmanuel Andronikof, Microlocalisation tempérée, Mém. Soc. Math. France (N.S.) 57 (1994), 176 (French, with English and French summaries). MR 1273991
- Jan-Erik Björk, Analytic ${\scr D}$-modules and applications, Mathematics and its Applications, vol. 247, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1232191, DOI 10.1007/978-94-017-0717-6
- Jean-Luc Brylinski, Bernard Malgrange, and Jean-Louis Verdier, Transformation de Fourier géométrique. II, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 5, 193–198 (French, with English summary). MR 854732
- A. D’Agnolo and P. Schapira, The Radon-Penrose transform for $\mathcal {D}-$modules, J. of Functional Analysis, 139 (1996), 349–382.
- A. D’Agnolo and P. Schapira, Leray’s quantization of projective duality, Duke Math. J. 84 (1996), 453–496.
- L. Daia, La transformation de Fourier pour les $\mathcal {D}$-modules, Thèse, Université de Grenoble (1995).
- J. Faraut and S. Gindikin, Private communication to P.S., (1995).
- R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), no. 2, 327–358. MR 732550, DOI 10.1007/BF01388568
- Masaki Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), no. 2, 319–365. MR 743382, DOI 10.2977/prims/1195181610
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mémoires Soc. Math. France, 64 (1996).
- Masaki Kashiwara and Wilfried Schmid, Quasi-equivariant ${\scr D}$-modules, equivariant derived category, and representations of reductive Lie groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 457–488. MR 1327544, DOI 10.1007/978-1-4612-0261-5_{1}6
- Nicholas M. Katz and Gérard Laumon, Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 361–418 (French). MR 823177
- Bernard Malgrange, Transformation de Fourier géometrique, Astérisque 161-162 (1988), Exp. No. 692, 4, 133–150 (1989) (French). Séminaire Bourbaki, Vol. 1987/88. MR 992206
- A. Martineau, Distributions et valeurs au bord des fonctions holomorphes, Theory of Distributions (Proc. Internat. Summer Inst., Lisbon, 1964) Inst. Gulbenkian Ci., Lisbon, 1964, pp. 193–326 (French). MR 0219754
- Mikio Sato, Takahiro Kawai, and Masaki Kashiwara, Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Lecture Notes in Math., Vol. 287, Springer, Berlin, 1973, pp. 265–529. MR 0420735
Bibliographic Information
- Masaki Kashiwara
- Affiliation: RIMS, Kyoto University, Kyoto 606-01, Japan
- MR Author ID: 98845
- Pierre Schapira
- Affiliation: Institut de Mathématiques, Université Paris VI, Case 82, 4 pl Jussieu, 75252 Paris, France
- Email: schapira@math.jussieu.fr
- Received by editor(s): September 17, 1996
- Received by editor(s) in revised form: May 23, 1997
- © Copyright 1997 American Mathematical Society
- Journal: J. Amer. Math. Soc. 10 (1997), 939-972
- MSC (1991): Primary 32C38, 14F10, 44A10
- DOI: https://doi.org/10.1090/S0894-0347-97-00245-2
- MathSciNet review: 1447834