Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Intersection theory on $\overline {\mathcal {M}}_{1,4}$ and elliptic Gromov-Witten invariants
HTML articles powered by AMS MathViewer

by E. Getzler
J. Amer. Math. Soc. 10 (1997), 973-998


We find a new relation among codimension $2$ algebraic cycles in the moduli space $\bar {\mathcal {M}}_{1,4}$, and use this to calculate the elliptic Gromov-Witten invariants of projective spaces $\mathbb {CP}^2$ and $\mathbb {CP}^3$.
  • D. Avritzer, Enumerative geometry of del Pezzo surfaces, ICTP preprint IC/93/53.
  • K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), 601–617.
  • K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), 45–88.
  • K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), 1–60.
  • M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993), no. 2-3, 279–304. MR 1240687, DOI 10.1016/0550-3213(93)90548-4
  • L. Caporaso and J. Harris, Counting plane curves of any genus, to appear, Invent. Math., alg-geom/9608025.
  • T. Eguchi, K. Hori and C.-S. Xiong, Quantum cohomology and the Virasoro algebra, hep-th/9703086.
  • Carel Faber, Chow rings of moduli spaces of curves. I. The Chow ring of $\overline {\scr M}_3$, Ann. of Math. (2) 132 (1990), no. 2, 331–419. MR 1070600, DOI 10.2307/1971525
  • William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
  • W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, to appear in Proc. Symp. Pure Math., Amer. Math. Soc., Providence, R.I., alg-geom/9608011.
  • E. Getzler, The semi-classical approximation for modular operads, Max-Planck-Institut preprint MPI-96-145, alg-geom/9612005.
  • E. Getzler, Generators and relations for $H_\bullet (\bar {\mathcal {M}}_{1,n},\mathbb {Q})$, in preparation.
  • E. Getzler and R. Pandharipande, The number of elliptic space curves, in preparation.
  • R. Hain and E. Looijenga, Mapping class groups and moduli spaces of curves, to appear in Proc. Symp. Pure Math., Amer. Math. Soc., Providence, R.I., alg-geom/9607004.
  • L. Göttsche and R. Pandharipande, The quantum cohomology of blow-ups of $\mathbb {P}^2$ and enumerative geometry, alg-geom/9611012.
  • Joe Harris, On the Severi problem, Invent. Math. 84 (1986), no. 3, 445–461. MR 837522, DOI 10.1007/BF01388741
  • R. Kaufmann, The intersection form in the cohomology of the moduli space of genus $0$ $n$-pointed curves $H^*(\overline {M}_{0,n})$ and the explicit Künneth formula in quantum cohomology, Max-Planck-Institut für Mathematik preprint MPI 96-106, alg-geom/9608026.
  • Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI 10.1090/S0002-9947-1992-1034665-0
  • Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
  • Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI 10.7146/math.scand.a-12001
  • J. Kollár, “Rational curves on algebraic varieties,” Springer-Verlag, Berlin-Heidelberg-New York, 1995.
  • Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758, DOI 10.1007/BF02099526
  • M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244, DOI 10.1007/BF02101490
  • J. Li and G. Tian, Virtual moduli cycles and GW-invariants, alg-geom/9602007.
  • J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, alg-geom/9608032.
  • R. Pandharipande, A geometric realization of Getzler’s relation, hep-th/9705016.
  • Ziv Ran, The degree of a Severi variety, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 125–128. MR 888887, DOI 10.1090/S0273-0979-1987-15534-0
  • Israel Vainsencher and Dan Avritzer, Compactifying the space of elliptic quartic curves, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 47–58. MR 1201374
  • Edward Witten, On the structure of the topological phase of two-dimensional gravity, Nuclear Phys. B 340 (1990), no. 2-3, 281–332. MR 1068086, DOI 10.1016/0550-3213(90)90449-N
Similar Articles
Bibliographic Information
  • E. Getzler
  • Affiliation: Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, D-53225 Bonn, Germany
  • Address at time of publication: Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2730
  • MR Author ID: 210138
  • ORCID: 0000-0002-5850-7723
  • Email:
  • Received by editor(s): February 10, 1997
  • Received by editor(s) in revised form: June 4, 1997
  • © Copyright 1997 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 10 (1997), 973-998
  • MSC (1991): Primary 14H10, 14H52, 14N10, 81T40, 81T60
  • DOI:
  • MathSciNet review: 1451505