The Arason invariant and mod 2 algebraic cycles
Authors:
Hélène Esnault, Bruno Kahn, Marc Levine and Eckart Viehweg
Journal:
J. Amer. Math. Soc. 11 (1998), 73-118
MSC (1991):
Primary 11E81; Secondary 55R40
DOI:
https://doi.org/10.1090/S0894-0347-98-00248-3
MathSciNet review:
1460391
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let
be a field,
over
a smooth variety with function field
and
a quadratic vector bundle over
. Assuming that the generic fibre
of
is in
, we compute the image of its Arason invariant

in
by the
differential of the Bloch-Ogus spectral sequence. This gives an obstruction to
being a global cohomology class.
- 1. J. Kr. Arason, Cohomologische Invarianten quadratischer Formen, J. Alg. 36 (1975), 448-491. MR 52:10592
- 2. J. Barge, Une definition cohomologique de l'invariant d'Arason, preprint, 1995.
- 3. S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. Ecole Norm. Sup. 7 (1974), 181-202. MR 54:318
- 4.
S. Bloch and K. Kato,
-adic étale cohomology, Publ. Math. IHES 63 (1986), 107-152. MR 87k:14018
- 5. R. Bott On torsion in Lie groups, Proc. Acad. Sci. USA 40 (1954), 586-588. MR 16:12a
- 6. N. Bourbaki, Eléments de Mathématiques, Groupes et Algèbres de Lie, ch. 4,5,6, Masson, Paris, 1981. MR 83g:17001
- 7.
C. Chevalley, Sur les décompositions cellulaires des espaces
, Proc. Sympos. Pure Math. 56 (I), AMS, Providence, 1994, 1-23. MR 95e:14041
- 8. J.-L. Colliot-Thélène, Birational invariants, purity and Gersten's conjecture, Proc. Sympos. Pure Math. 58.1, AMS, Providence, 1995, 1-64. MR 96c:14016
- 9.
J.-L. Colliot-Thélène and W. Raskind,
-cohomology and the second Chow group, Math. Ann. 270 (1985), 165-199. MR 86m:14005
- 10. J.-L. Colliot-Thélène, R. Hoobler, and B. Kahn, The Bloch-Ogus-Gabber theorem, to appear in: Proc. Fields Institute (Volume in memory of R. Thomason).
- 11. P. Deligne, Théorie de Hodge, III, Publ. Math. IHES 44 (1974), 5-78. MR 58:16653b
- 12. P. Deligne, unpublished notes of IHES lectures, 1979.
- 13. M. Demazure and A. Grothendieck, Séminaire de géométrie algébrique du Bois-Marie: Schémas en groupes (SGA 3), tome III, Lecture notes in Math. 153, Springer, Berlin, 1970. MR 43:223c
- 14. M. Demazure, Invariants symétriques du groupe de Weyl et torsion, Invent. Math. 21 (1973), 287-301. MR 49:7268
- 15. M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. ENS 7 (1974), 53-68. MR 50:7174
- 16. E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349-462. Engl. translation: AMS Transl. Ser. II 6 (1957), 111-244. MR 13:904c
- 17. H. Esnault, B. Kahn, and E. Viehweg, Coverings with odd ramification and Stiefel-Whitney classes, J. reine angew. Math. 441 (1993), 145-188. MR 94m:14017
- 18. H. Freudenthal, Zur Berechnung der Charaktere der halbeinfachen Lieschen Gruppen. II, Indag. Math. 16 (1954), 487-491. MR 1:673a
- 19. W. Fulton, Intersection theory, Erg. Math. 2, Springer, 1984. MR 85k:14004
- 20. O. Gabber, Gersten's conjecture for some complexes of vanishing cycles, Manuscripta Math. 85 (1994), 323-343. MR 96m:14010
- 21.
H. Gillet, Riemann-Roch theorems for higher algebraic
-theory, Adv. in Math. 40 (1981), 203-289. MR 83m:14013
- 22. M. Gros, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. France 21 (1985). MR 87m:14021
- 23. A. Grothendieck, Torsion homologique et sections rationnelles, exposé 5 in Séminaire Chevalley, ``Anneaux de Chow et applications", Paris, 1958.
- 24. A. Grothendieck, Problèmes ouverts en théorie des intersections, exposé XIV in Théorie des intersections et théorème de Riemann-Roch (SGA6), Lect. Notes in Math. 225, Springer, 1971, 667-689. MR 50:7133
- 25. B. Harris, Torsion in Lie goups and related spaces, Topology 5 (1966), 347-354. MR 34:6798
- 26. J.E. Humphreys, Linear algebraic groups (corrected third printing), Springer, New York, 1987. MR 53:633 (original 1975 printing)
- 27. L. Illusie, Complexe cotangent et déformations I, Lect. Notes in Math. 239, Springer, Berlin, 1971. MR 58:10886a
- 28. W. Jacob and M. Rost, Degree four cohomological invariants for quadratic forms, Invent. Math. 96 (1989), 551-570. MR 90g:11044
- 29.
U. Jannsen, Mixed Motives and Algebraic
-Theory, Lecture Notes in Mathematics 1400, Springer, Berlin-Heidelberg, 1990. MR 91g:14008
- 30. J.F. Jardine, Higher spinor classes, Mem. Amer. Math. Soc. 110 (1994), no. 528. MR 95a:11035
- 31. J.-P. Jouanolou, Riemann-Roch sans dénominateurs, Invent. Math. 11 (1970), 15-26. MR 48:11115
- 32.
B. Kahn, Descente galoisienne et
des corps de nombres,
-theory 7 (1993), 55-100. MR 94i:11094
- 33. B. Kahn, Applications of weight-two motivic cohomology, Documenta Math. 1 (1996), 395-416. CMP 97:05
- 34. A. Laghribi, Isotropie de certaines formes quadratiques de dimension 7 et 8 sur le corps des fonctions d'une quadrique, Duke Math. J. 85 (1996), 397-410. MR 97h:11039
- 35. T.Y. Lam, The algebraic theory of quadratic forms (2nd ed.), Benjamin, New York, 1980. MR 83d:10022
- 36.
Y. Laszlo and C. Sorger, The line bundles on the moduli of parabolic
-bundles over curves and their sections, Ann. Sci. Ec. Norm. Sup. (4) 30 (1997), no. 4, 499-525. CMP 97:14
- 37.
M. Levine, The indecomposable
of fields, Ann. Sci. Ec. Norm. Sup. 22 (1989), 255-344. MR 91a:11061
- 38.
M. Levine, The algebraic
-theory of the classical groups and some twisted forms, Duke Math. J. 70 (1993), 405-443. MR 94d:19004
- 39. S. Lichtenbaum, Values of zeta-functions at non-negative integers, Lect. Notes in Math. 1068, Springer, Berlin, 1984, 127-138. CMP 16:17
- 40. S. Lichtenbaum, The construction of weight-two arithmetic cohomology, Invent. Math. 88 (1987), 183-215. MR 88d:14011
- 41. S. Lichtenbaum, New results on weight-two motivic cohomology, The Grothendieck Festschrift, vol. 3, Progress in Math. 88, Birkhaüser, Boston, 1990, 35-55. MR 92m:14030
- 42.
R. Marlin, Anneaux de Chow des groupes algébriques
,
,
,
,
,
; torsion, C. R. Acad. Sci. Paris 279 (1974), 119-122. MR 50:321
- 43.
A. S. Merkurjev, On the norm residue symbol of degree
, Dokl. Akad. Nauk SSSR 261 (1981), 542-547. English translation: Soviet Math. Dokl. 24 (1981), 546-551. MR 83h:12015
- 44.
A. S. Merkurjev, The group
for projective homogeneous varieties (in Russian), Algebra i Analiz 7 (1995), 136-164. English translation: Leningrad (Saint-Petersburg) Math. J. 7 (1996), 421-444. MR 97a:19003
- 45.
A. S. Merkurjev, Comparison of equivariant and ordinary
-theory of algebraic varieties, to appear in St.-Petersburg Math. J.
- 46.
A. S. Merkurjev and A. A. Suslin,
-cohomology of Severi-Brauer varieties and norm residue homomorphism (in Russian), Izv. Akad. Nauk SSSR 46 (1982), 1011-1046. English translation: Math USSR Izv. 21 (1983), 307-340. MR 84i:12007
- 47.
A. S. Merkurjev and A. A. Suslin, The norm residue homomorphism of degree
(in Russian), Izv. Akad. Nauk SSSR 54 (1990), 339-356. English translation: Math. USSR Izv. 36 (1991), 349-368. MR 91f:11083
- 48.
A. S. Merkurjev and A. A. Suslin, The group
for a field (in Russian), Izv. Akad. Nauk. SSSR 54 (1990), 522-545. English translation: Math. USSR Izv. 36 (1991), 541-565. MR 91g:19002
- 49. J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press, Princeton, 1974. MR 55:13428
- 50.
I. A. Panin, Application of
-theory in algebraic geometry, doctoral dissertation, LOMI, Leningrad, 1984.
- 51. I. A. Panin, A splitting principle, Preprint, Bielefeld University, 1994.
- 52. R. Parimala and V. Srinivas, Analogues of the Brauer group for algebras with involution, Duke Math. J. 66 (1992), 207-237. MR 93i:16027
- 53. E. Peyre, Corps de fonctions de variétés homogènes et cohomologie galoisienne, C. R. Acad. Sci. Paris 321 (1995), 891-896. MR 96i:14006
- 54.
D. Quillen, Higher algebraic
-theory, I, Lect. Notes in Math. 341, Springer, New York, 1973, 83-147. MR 49:2895
- 55. P. Roquette, The Galois cohomology of the projective linear group, Math. Ann. 150 (1963), 411-439. MR 27:4832
- 56.
M. Rost, Hilbert's theorem 90 for
for degree-two extensions, preprint, Regensburg, 1986.
- 57. M. Rost, Chow groups with coefficients, Documenta Math. 1 (1996), 319-393. CMP 97:04
- 58. M. Rost, Cohomological invariants, in preparation.
- 59. W. Scharlau, Quadratic and hermitian forms, Springer, Berlin, 1985. MR 86k:11022
- 60. J-P. Serre, Cohomologie galoisienne: progrès et problèmes, Sém. N. Bourbaki, march 1994, exposé 783. MR 97d:11063
- 61. C. S. Seshadri, Line bundles on Schubert varieties, Vector bundles on algebraic varieties (Bombay, 1984), T.I.F.R. Studies in Math. 11, Oxford University Press, 1987, 499-528. MR 88i:14047
- 62.
A. A. Suslin,
-theory and
-cohomology of certain group varieties, Adv. in Soviet Math. 4, AMS, Providence, 1991, 53-74. MR 92g:19004
- 63.
A. A. Suslin, Torsion in
of fields,
-theory 1 (1987), 5-29. MR 89a:11123
- 64. M. Szyjewski, The fifth invariant of quadratic forms (in Russian), Algebra Anal. 2 (1990), 213-234. English translation: Leningrad Math. J. 2 (1991), 179-198. MR 91d:11040
- 65. J. Tits, Classification of algebraic semi-simple groups, Proc. Sympos. Pure Math. 9, AMS, 1966, 33-62. MR 37:309
Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 11E81, 55R40
Retrieve articles in all journals with MSC (1991): 11E81, 55R40
Additional Information
Hélène Esnault
Affiliation:
FB6, Mathematik, Universität Essen, D-45117 Essen, Germany
Email:
esnault@uni-essen.de
Bruno Kahn
Affiliation:
Institut de Mathématiques de Jussieu, Université Paris 7, Case 7012, 75251 Paris Cedex 05, France
Email:
kahn@math.jussieu.fr
Marc Levine
Affiliation:
Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
Email:
marc@neu.edu
Eckart Viehweg
Affiliation:
FB6, Mathematik, Universität Essen, D-45117 Essen, Germany
Email:
viehweg@uni-essen.de
DOI:
https://doi.org/10.1090/S0894-0347-98-00248-3
Received by editor(s):
September 13, 1996
Received by editor(s) in revised form:
July 28, 1997
Additional Notes:
This research was partially supported by the DFG Forschergruppe “Arithmetik und Geometrie”; the second and third author gratefully acknowledge its hospitality.
Article copyright:
© Copyright 1998
American Mathematical Society


